اثر مقدار فسفر، باکتری ریزوبیوم و کود زیستی نیتراژین بر رشد و عملکرد لوبیا (Phaseolus vulgaris L.)
الموضوعات : مجله علمی- پژوهشی اکوفیزیولوژی گیاهیمیثم قنبرزاده 1 , هاشم امین پناه 2 , حسن اخگری 3
1 - فارغ التحصیل کارشناسی ارشد زراعت، گروه زراعت و اصلاح نباتات، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
2 - دانشیار، گروه زراعت و اصلاح نباتات، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
3 - مربی، گروه زراعت و اصلاح نباتات، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
الکلمات المفتاحية: عناصر پرمصرف, ازتوباکتر, بقولات, تثبیت زیستی نیتروژن, باکتریهای محرک رشد گیاه,
ملخص المقالة :
به منظور بررسی اثر مقدار فسفر، کاربرد باکتری ریزوبیوم و کود زیستی نیتراژین بر رشد و عملکرد لوبیا (توده محلی گیلان)، آزمایشی به صورت فاکتوریل در قالب طرح پایه بلوکهای کامل تصادفی با سه تکرار در شهرستان املش، استان گیلان انجام شد. فاکتورهای آزمایش شامل مقادیر مختلف مصرف فسفر، کود زیستی نیتراژین و باکتری ریزوبیوم بود. نتایج نشان داد که با افزایش مصرف فسفر از صفر به 50 کیلوگرم در هکتار، عملکرد دانه و عملکرد غلافتر بهطور معنیداری به ترتیب به میزان 28 و 21 درصد افزایش یافت. افزایش مصرف فسفر از 50 به 75 کیلوگرم در هکتار، تأثیر معنیداری بر عملکرد دانه و غلافتر نداشت، درحالیکه مصرف بیشتر فسفر (100 کیلوگرم در هکتار) سبب کاهش معنیدار عملکرد دانه و غلافتر گردید. معادلات رگرسیونی نشان داد که حداکثر عملکرد دانه (9/1403 کیلوگرم در هکتار) و عملکرد غلافتر (7/8510 کیلوگرم در هکتار) به ترتیب با مصرف 4/65 و 3/59 کیلوگرم فسفر در هکتار حاصل شد. مصرف کود زیستی نیتراژین سبب افزایش معنیدار عملکرد دانه و غلافتر به ترتیب به میزان 7 و 10 درصد گردید. همچنین تلقیح بذر لوبیا با باکتریهای ریزوبیوم منجر به افزایش عملکرد دانه و غلافتر به ترتیب به میزان 17 و 20 درصد گردید.
آقاعلیپور ا.، ف. فرحوش، ب. میرشکاری و ع. عیوضی.1391. اثرکود اوره، یاشیل و نیتراژین بر عملکرد و اجزای عملکرد لوبیا چشم بلبلی. اکوفیزیولوژی گیاهان زراعی. جلد 23 شماره 3: 248-235.
رحیمی ل.، ن.ع اصغرزاد و ش. اوستان. 1390. اثر سویههای بومی ازتوباکتر کروکوکوم بر رشد، جذب نیتروژن و فسفر گیاه گندم در شرایط گلخانهای. مجله علوم و فنون کشاورزی و منابع طبیعی. جلد 15 شماره 58: 171-159.
رضاپور کویشاهی، ط.، م. ح. انصاری و م. مصطفویراد. 1394. اثر برخی سویههای باکتری حلکنندۀ فسفات بر عملکرد و خصوصیات زراعی مهم لوبیای محلی (Phaseolus vulgaris L.) گیلان در مقادیر مختلف کود فسفره. مجله بهزراعی کشاورزی جلد 17 شماره 3، ص801-814.
Al-Niemi, T.S., M.L. Kahn, and T.R. McDermott. 1997. P metabolism in the bean-Rhizobium tropici symbiosis. Plant Physiol. 113:1233–1242
Bhattacharyya, P.N. and D.K. Jha. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28:1327–1350
Crowley, D.E., 2006. Microbial siderophores in the plant rhizosphere. In: Barton, L.L., Abadı´a, J. (Eds.), Iron Nutrition in Plants and Rhizospheric Organisms. Springer, The Netherlands, pp. 169–198.
Dey, R., K.K. Pal, D.M. Bhatt and S.M. Chauhan. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol. Res. 159: 371–394
Divito, G.A. and V.O. Sadras. 2014. How do phosphorus, potassium and sulphur affect plant growth and biological nitrogen fixation in crop and pasture legumes? A meta-analysis. Field Crops Res. 156: 161–171
Fibach-Paldi, S., S. Burdman and Y. Okon. 2012. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol. Letter. 326: 99–108
Ghasempour nikfarjam, S. and H. Aminpanah. 2015. Effects of phosphorus fertilization and Pseudomonas fluorescens strain on the growth and yield of faba bean (Vicia faba L.). IDESIA. 33 (4): 15-21
Lowry, O. and A. Lopez. 1946. Determination of inorganic phosphate in the presents of labile phosphate esters. J. Biol. Chem. 162: 421-426.
Maksimov, I., R. Abizgil’dina and L. Pusenkova. 2011. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl. Biochem. Microbiol. 47: (4) 333-345
McBeath, T. M., R.J. Smernik, E.Y. Lombi and M.J. McLaughlin. 2006. Hydrolysis of pyrophosphate in a highly calcareous soil: A solid-state phosphorus-31 NMR study. Soil Sci. Soci. Am. J. 70: 856–862
Moshtagh, S. and H. Aminpanah. 2015. Effects of phosphorus rate and iron foliar application on green bean (Phaseolus vulgaris L.) growth and yield. Agric. Cons. Sci., 80 (3): 139–146
Pacyna, S., M. Schulz and H.W. Scherer. 2006. Influence of sulphur supply on glucose and ATP concentrations of inoculated broad beans (Vicia faba minor L.). Biol. Fertil. Soils. 42: 324–329
Panahi, A., Aminpanah, H. and Sharifi, P. 2015. Effect of Nitrogen, Bio-Fertilizer, and Silicon Application on Yield and Yield Components of Rice (Oryza sativa L.). Philipp. J. Crop Sci. 40(1): 76-81.
Rao, D.L.N. 2001. BNF research progress 1996-2000: all India coordinated research project on biological nitrogen fixation. IISS, Bhopal.
Rodelas, B., J. Gonzalez-lopez, V. Salmeron and M.V. Martinez-toledo. 1999. Response of Faba bean (Vicia faba L.) to combined inoculation with Azotobacter and Rhizobium leguminosarum bv. Viceae. Appl. Soil Ecol. 12(1): 51–59
Ronnera, E., A.C. Frankea, B. Vanlauwe, M. Dianda, E. Edeh, B. Ukem, A. Bala, J. van Heerwaarden and K.E. Gillera. 2016. Understanding variability in soybean yield and response to P-fertilizer and rhizobium inoculants on farmers’ fields in northern Nigeria. Field Crops Res. 186: 133–145
Rotaru, V. and T.R. Sinclair. 2009. Interactive influence of phosphorus and iron on nitrogenfixation by soybean. Environ. Exp. Bot. 66: 94–99.
Saharan, B. and V. Nehra. 2011. Plant growth promoting rhizobacteria: a critical review. Life Sci.Med. Res. 21: 1-30.
Salehi, B. and Aminpanah, H. 2015. Effects of phosphorus fertilizer rate and Pseudomonas fluorescens strain on field pea (Pisum sativum subsp. arvense (L.) Asch.) growth and yield. Acta agric. Slov. 105(2): 213 - 224
Saravanakumara, D., C. Vijayakumarc, N. Kumarb and R. Samiyappan. 2007. PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot. 26: 556–565
Shaharoona, B., Naveed, M., Arshad, M. and Zahir, Z.A. 2008. Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl. Microbiol. Biotechnol. 79:147–55
Sulieman, S., C.V. Ha, J. Schulze and L.S.P. Tran. 2013. Growth and nodulation of symbiotic Medicago truncatula at different levels of phosphorus availability. J. Exp. Bot. 64: 2701–2712
Talebipour, N., H. Aminpanah and M. Rabiee. 2015. Effects of Rhizobium phaseoli strains and molybdenum foliar application on growth and yield in bean (Phaseolus vulgaris L.). J. Soil Nat. 8(1): 1–8
Thuita, M., P. Pypers, L. Herrmann, R.J. Okalebo, C. Othieno, E. Muema and D. Lesueur. 2012. Commercial rhizobial inoculants significantly enhance growth and nitrogen fixation of a promiscuous soybean variety in Kenyan soils. Biol. Fertil. Soils. 48: 87–96
Vanlauwe, B., A. Bationo, J. Chianu, K.E. Giller, R. Merckx, U. Mokwunye, O. Ohiokpehai, P. Pypers, R. Tabo, K.D. Shepherd, E.M.A. Smaling, P.L. Woomer and N. Sanginga. 2010. Integrated soil fertility management: operational definition and consequences for implementation and dissemination. Outlook Agric. 39: 17–24
Varin, S., J.B. Cliquet, E. Personeni, J.C. Avice and S. Lemauviel-Lavenant. 2010. How does sulphur availability modify N acquisition of white clover (Trifolium repens L.)? J. Exp. Bot. 61: 225–234
_||_