تاثیر سطوح کود نانو کلاته نیتروژن و اوره در گیاه گندم در تنش خشکی بعد ازگلدهی
الموضوعات : مجله علمی- پژوهشی اکوفیزیولوژی گیاهینعیمه آستانه 1 , فرود بذر افشان 2 , مهدی زارع 3 , بهرام امیری 4 , عبدالله بحرانی 5
1 - گروه کشاورزی، واحد فیروزآباد، دانشگاه آزاد اسلامی، فیروزآباد، ایران
2 - گروه کشاورزی، واحد فیروزآباد، دانشگاه آزاد اسلامی، فیروزآباد، ایران
3 - گروه کشاورزی، واحد فیروزآباد، دانشگاه آزاد اسلامی، فیروزآباد، ایران
4 - گروه کشاورزی، واحد فیروزآباد، دانشگاه آزاد اسلامی، فیروزآباد، ایران
5 - گروه کشاورزی، واحدرامهرمز ، دانشگاه آزاد اسلامی، رامهرمز، ایران
الکلمات المفتاحية: تنش خشکی, عملکرد دانه, صفات زراعی, کود نانو, صفات بیوشیمیایی,
ملخص المقالة :
به منظور مقایسه کارایی کود نانو کلاته نیتروژن وکود اوره در گیاه گندم تحت شرایط تنش خشکی آزمایشی به صورت اسپلیت اسپلیت پلات در قالب طرح بلوک کامل تصادفی در دو منطقه نصرآباد وکودیان در استان فارس انجام شد. فاکتور اصلی شامل تیمار آبیاری (آبیاری نرمال و قطع آبیاری در مرحله گلدهی)، فاکتور فرعی شامل مصرف کود اوره درسطوح (0، 37، 74 و 110 کیلوگرم نیتروژن در هکتار) ، و فاکتور فرعی فرعی شامل مصرف کود نانو کلاته نیتروژن در سطوح ( 0، 14، 27 و 41 کیلوگرم نیتروژن در هکتار ) بود . نتایج نشان داد که تیمارهای تنش خشکی، کود اوره و کود نانو کلاته نیتروژن اثر معنی داری بر روی تمام صفات مورد مطالعه داشت. با توجه به مقادیر میانگین، تنش خشکی در مرحله قطع گلدهی باعث کاهش 51 درصدی در عملکرد دانه گندم در مقایسه با آبیاری طبیعی شد. استفاده از کود اوره 37، 74 و 110 کیلوگرم نیتروژن در هکتار باعث افزایش 9، 19 و 27 درصد در عملکرد دانه در مقایسه با شاهد شد. کاربرد کود نانو کلاته نیتروژن در مقادیر 14، 27 و 41 کیلوگرم نیتروژن در هکتار به ترتیب باعث افزایش 31، 44 و 98 درصد افزایش عملکرد دانه نسبت به شاهد بود. در اثر متقابل تنش، اوره و کود نانوکلاته نیتروژن بر عملکرد دانه، مشخص شد که در شرایط نرمال و قطع آبیاری در مرحله گلدهی بالاترین عملکرد دانه (7591 و4091کیلوگرم در هکتار) توسط 110 کیلوگرم نیتروژن در هکتارکود اوره و 41 کیلوگرم نیتروژن در هکتار کود نانو بدست آمد .
Abid, M., A. Hakeem, Y. Shao, Y. Liu, R. zahoor, Y. Fan, J. suyu, S.T. Ata-ul-karim, Z. Tian, D. Jiang and J.l. Snider. 2018. Seed osmo-priming invokes stress memory against post-germinative drought stress in wheat (Triticum Aestivum L.). EEB Journal, 145, pp.12-20.
Agrawal, S. and P. Rathore. 2014. Nanotechnology. Pros and cons to agriculture: A review. Intl. Appl. Sci. 3:43–55.
Ali, S., Y. Xu, Q.Jia, I. Ahmad, T. Wei, X. Ren, P. zhang, R. Din,T. Cai, and Z. Jia. 2018. Cultivation techniques combined with deficit irrigation improves winter wheat photosynthetic characteristics, dry matter translocation and water use efficiency under simulated rainfall conditions. AGR Water Manage.
Allahverdiyev, T.I., J.M. Talai, I.M. Huseynova and J.A. Aliyev. 2015. Effect of drought stress on some physiological parameters, yield, yield components of durum (Triticum durum desf.) and bread (Triticum aestivum L.) wheat genotypes. BISAB Journal, 1(1), pp.50-62.
Arjenaki, F.G., R. Jabbari and A. Morshedi. 2012. Evaluation of drought stress on relative water content, chlorophyll content and mineral elements of wheat (Triticum aestivum L.) varieties. IJACS, 4(11), pp.726-729.
Arnon, A. N. 1967. Method of extraction of chlorophyll in the plants. Agron. J. 23: 112-121.
Ajithkumarand, P and R. Panneerselvam .2013. Osmolyte accumulation, photosynthetic pigment and growth of setaria italica under droght stress. APJR. 2: 220-224
Bates, L. S., R. P. Waldren and I. D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39: 205-208.
Benzon, H. R. L., M. R. U. Rubenecia and S.C. Lee. 2015. Nano-fertilizer affects the growth, development and chemical properties of wheat. International Journal of Agronomy and Agricultural Research, 7, 105-117.
Chang C, Yang M, Wen H, Chern J .2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Analaysis, 10: 178-182.
Darbyshire B, 1971, changes in indoleacetic acid oxidase activity associated with plant water potential. Plant Physiol, 25:80-84
Dordas, C. and C. Sioulas, Safflower yield, chlorophyll content, photosynthesis, and water use efficiency response to nitrogen fertilization under rainfed conditions. Ind Crops Prod, v. 27, n. 1, p. 75-85, 2008
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. (1956) Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28, 350-356.
Emam, Y. and M. Niknejad. 2011. An Introduction to the Physiology of Crop Yield. 2nd Ed. Shiraz University Press, Shiraz. (In Persian).
Farooq, M, M. Hhussain, and K.H. Siddique.2014. Drought stress in wheat during flowering and grain-filling periods. Crit Rev Plant Sci. 33(4), pp.331-349.
Ghasemi, M., G. Normokamadi, H. Madani, H. Heidari, H. R. Mobasser. 2017. Two Iranian Rice Cultivars’ Response to Nitrogen and Nano-Fertilizer. Open journal of Ecology, 7, 591-631. Doi: 10.4236/ oje. 2017.710040.
Harborne, J.B and Williams, C.A. 2000. Advances in flavonoid research since 1992. Phytochemistry. 55, 481–504.
Kafi, M., Salehi, M. Kiani, A. 2018. Growth analysis of Kochia irrigated with saline water in summer cropping. P: 458-449
Keyvan, S. 2010. The effects of drought stress on yield, Relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. J. Anim. Plant Sci, 8(3), pp.1051-1060.
Komarneni S. Potential of nanotechnology in environmental soil science. Proc of 9th International Conf East and Southeast Asia Federation of Soil Science Societies, (Korean Society of Soil Science and Fertilizers, Seoul) Oct 27-30. 2009; 16-20.
Kirnak, H., C. Kaya, I. TAS and D. Higgs. 2001. The influence of water deficit on vegetative growth, physiology, fruit yield and quality in egg plants. Plant Physiology 27: 34-46.
Lawlor, W. 2002. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. Journal of Experimental Botany 53: 773-787
Lal R. 2008. Soils and India’s food security. J. Ind. Soc. Soil Sci.; 56(2):129-138.
Li, T. H., and S. H. Li.2005. Leaf responses of micropopagated apple plants to water stress: nonstructural carbohydrate composition and regulatory role of metabolic enzymes. Tree Physiology, 25: 495-504
Li R. Q, Y. M. li, J. X. He, G. C. Li, X. C. Hao, and F. Wang. 2011. Effect of N application rate on N utilization and grain yield of winter wheat. J. Triti. Crops 31 271–275.
Liu, R. and R. Lal, 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. A review. Science of the total Environment, 514, 131- 139. DOI: 10.1016/j.scitotenv.2015.01.104
Ma S. Y., Y. N. Liu, Y. Q. Wang, Y. N. Qin, H. L. Liu and Z. P. Peng .2015. Study on the characters of living condition and nutrient balance of high-yield wheat and maize rotation system in Hebei province. J. Agric. Univ. 38 8–13.
Monreal, C. M. 2010. Nano-fertilizers for increased N and P use efficiencies by crops. Pages 12-13. In: Monreal Summary of Information Currently Provided to MRI Concerning Applications for Round 5 of the Ontario Research Fund- Research Excellence Program.
Naderi, M., A.A. Danesh Shahraki and R Naderi.2011. Application of nanotechnology in the optimization of formulation of chemical fertilizers. IJNN.12: 16-23.
Nazaran, M.H., 2012. Chelate compounds. U.S. Patent 8,288,587.
Noureldin, N.A., H.S. Saudy, F. Ashmawy, and H.M. Saed. 2013. Grain yield response index of bread wheat cultivars as influenced by nitrogen levels. AOAS. 58:147-152.
Negero, F. W. 2017. Yield and yield components of potato (Solanum tuberosum L.) as influenced by planting density and rate of nitrogen application at Holeta, West Oromia region of Ethiopia. Afr. J. Agric. Res. 12(26), pp.2242-2254
Park, M. C., Y. Kim and D. H. Lee. 2004. Intercalation of magnesium-urea complex into swelling clay. Journal of Physics and Chemistry of Solids 65 (2-3): 409–412.
Shao, H. B., Z. S. Liang and M. A. Shao. 2005. Change of antioxidative enzymes and MDA among 10 wheat genotypes at maturation stage under soil water deficits. Colloid. Surf. B: Biointerf 45 (2): 7-13.
Sharma P.D. Nutrient management Challenges and options. J. Ind. Soc. Soil Sci. 2008; 55(4):395-403.
Scott, N. and H. Chen. 2003. Nanoscale science and engineering for agriculture and food systems. A Report Submitted to Cooperative State Research, Education, and Extension Service, the USDA. National.
Schlegel, H. G. 1956. Die Verwertung organischer sauren durch chlorella in lincht. Planta 47: 510-515.
Subedi, K. D., B. L. Ma and A. G. Xue. 2007. Planting date and nitrogen effects on grain yield and protein content of spring wheat. Crop Sci. 47: 36-44.
Wagner, G.J., 1979. Content and vacuole. Extra vacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplast. Plant Physiology, 64: 88-93.
Wang, l., J.A. Palta, W. Chen, Y. Chen, and X. Deng.2018. Nitrogen fertilization improved water-use efficiency of winter wheat through increasing water use during vegetative rather than grain filling. Agr Water Manage. 197, pp.41-53.
Wortman, S. E., Davis, A. S., Schutte, B. J., and Lindquist J. L. 2011. Integrating management of soil nitrogen and weeds. Weed Science 59: 162-170.
Wu, z.z., Y.Q. Ying, Y.B. Zhang, Y.F. Bi, A.K Wang, and X.H. Du.2018. Alleviation of drought stress in Phyllostachys edulis by N and P application. Scientific reports, 8(1), p.228.
Xu, W, K. Cui, A. Xu, l. Nie, J. Huang, and Peng, S. 2015. Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta physiologiae plantarum, 37(2), p.9.
Zareabyaneh, H. and M. Bayatvarkeshi. 2015. Effects of slow-release fertilizers on nitrate leaching, its distribution in soil profile, N-use efficiency, and yield in potato crop. Environ Earth Sci. 74(4), pp.3385-3393.
_||_