تبیین الگوی اندازه گیری مدیریت سود با استفاده از روش ترکیبی هوشمند شبکه های عصبی و الگوریتم های فراابتکاری(ژنتیک و ازدحام ذرات)
الموضوعات :اقبال قادری 1 , پیمان امینی 2 , ایرج نوروش 3 , عطا محمدی 4
1 - گروه حسابداری ، دانشکده علوم انسانی ،دانشگاه آزاد اسلامی سنندج، ایران
2 - گروه حسابداری ، دانشگاه کردستان ، سنندج، ایران
3 - استاد حسابداری ، گروه حسابداری ، واحد سنندج ، دانشگاه آزاد اسلامی ، سنندج ، ایران.
4 - استادیار حسابداری ، گروه حسابداری ، واحد سنندج ، دانشگاه آزاد اسلامی ، سنندج، ایران.
الکلمات المفتاحية: الگوریتم ژنتیک, شبکه های عصبی, مدیریت سود, الگوریتم ازدحام ذرات,
ملخص المقالة :
شناخت مدیریت سود برای استفاده کنندگان از اطلاعات حسابداری به دلیل ارزیابی عملکرد، پیش بینی سودآوری و تعیین ارزش واقعی شرکت بسیار حائز اهمیت است. هدف از این تحقیق برآورد الگوی برای پیش بینی مدیریت سود با استفاده الگوی شبکه های عصبی و سپس استفاده از الگوریتم های فراابتکاری ژنتیک و ازدحام ذرات برای یافتن ترکیبی بهتر از داده های ورودی است به گونه ای که بتواند الگو اولیه را بهینه نماید. برای این منظور از 28 متغیر تاثیر گذار در قالب چهار گروه (مالی، مدیریتی، شرکتی و حسابرسی) در طی سال های 1390 الی 1395 در شرکت های پذیرفته شده در بورس اوراق بهادار تهران استفاده گردید. نتایج حاصل نشان می دهد که کاربرد این دو الگوریتم قدرت تبیین الگوهای اولیه را افزایش داده است. همچنین ارزیابی عملکرد الگو های شبکه عصبی حاکی از برتری این الگو ها در قیاس با الگوی رگرسیون خطیLR) ( است. روش ترکیبی شبکه های عصبی الگوریتم های ازدحام ذرات (A-PSO) و ژنتیک(A-GA) با شناسایی چهار متغیر بهینه به ترتیب شامل دقت پیش بینی، سهم مالکیت سهامداران عمده، اندازه شرکت و نسبت کیفیت، مدیریت سود را با دقت به ترتیب (59/95%) و (75/94%) پیش بینی کردند. بعلاوه روش های ترکیبی هوشمند فوق با بهبود ضریب همبستگی و معیار متوسط مربعات خطا نسبت به روش های رگرسیون خطی (LR) و روش شبکه های عصبی (ANN) در پیش بینی نتایج گروه ویژگی های مدیریتی و شرکتی کارآمدتر است.
_||_