کاربردالگوریتم ژنتیک خطی و غیر خطی در بهبود قدرت پیشبینی
الموضوعات :
1 - استادیار، حسابداری، دانشگاه آزاد اسلامی، واحد تهران مرکزی، تهران، ایران
الکلمات المفتاحية: شبکه عصبی, الگوریتم ژنتیک خطی, پیش بینی سودآوری, الگوریتم ژنتیک غیر خطی,
ملخص المقالة :
سود آوری به عنوان مبنایی برای ارزیابی کارایی مدیران شرکتها مورد استفاده قرار می گیرد. همچنین بخشی از تصمیم گیری به پیش بینی توانایی سودآوری آینده شرکتها مربوط می شود. امروزه تجزیه و تحلیل نسبت های مالی یک تکنیک قوی و ابزاری مناسب برای استفاده کنندگان در جهت شناخت و ارزیابی عملکرد گذشته، حال و پیش بینی وضعیت آینده شرکت هاست. یکی از مشکلاتی که در استفاده از نسبتهای مالی برای ارزیابی وضعیت مالی شرکت ها وجود دارد، این است که هر مجموعه نسبت های مالی یک بعد از عملکرد شرکتها را اندازه گیری می کند. برای از میان برداشتن این مشکل می توان از روشهای تصمیم گیری چند معیاره از جمله تحلیل پوششی داده ها، شبکه های عصبی مصنوعی، منطق فازی و ... استفاده نمود. هدف این تحقیق بررسی قدرت پیشبینی سودآوری آینده شرکتها با استفاده از مدلهای الگوریتم ژنتیک خطی و الگوریتم ژنتیک غیرخطی است جهت بالا بردن توان تصمیم گیری استفاده کنندگان صورتهای مالی در پیش بینی سودآوری آینده شرکتها می باشد. . سپس با توجه به نتایج بدست آمده، الگوها با یکدیگر مقایسه و بهترین الگو استخراج شده است. بر اساس اطلاعات و آمارهای در دسترس شرکتهای پذیرفته شده در بورس اوراق بهادار تهران در طی دوره 1391-1371، از 23 نسبت مالی برتر ، به عنوان متغیر مستقل استفاده شد. نتایج آزمون نشان می دهد دقت پیشبینی الگوریتم ژنتیک غیرخطی (90.04 درصد) بیشتر از الگوریتم ژنتیک خطی (87.14 درصد) است.