بررسی مقایسه دقت پیش بینی سیستم شبکه های عصبی مصنوعی بر مبنای رویکرد پرسپترون چندلایه و مدل باینری-لجستیک فالمر در راستای پیش بینی ورشکستگی
الموضوعات :سمیه ساروئی 1 , حمیدرضا وکیلی فرد 2 , قدرت اله طالب نیا 3
1 - گروه حسابداری، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه حسابداری، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - گروه حسابداری، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
الکلمات المفتاحية: پیش بینی ورشکستگی, شبکه عصبی مصنوعی, ریسک ورشکستگی, روش باینری-لجستیک,
ملخص المقالة :
تحلیلگران مالی و سایر استفادهکنندگان برای پیشبینی ورشکستگی شرکتها نیاز به اطلاعات مربوط و قابل اتکا دارند که باید اطلاعات به صورت متقارن بین تمامی استفادهکنندگان توزیع گردد. بر همین اساس، هدف این پژوهش، بررسی مقایسه دقت پیش بینی سیستم شبکه های عصبی مصنوعی بر مبنای رویکرد پرسپترون چندلایه و مدل باینری-لجستیک فالمر در راستای پیش بینی ورشستگی است. برای آزمون فرضیهها، از دادههای ترکیبی 172 شرکت پذیرفته شده در بورس اوراق بهادار تهران در بازه زمانی 1385-1396 استفاده شد. یافتههای حاصل از تجزیه و تحلیل دادههای پژوهش نشان داد که سیستم شبکههای عصبی مصنوعی بر مبنای رویکرد پرسپترون چندلایه قادرند با دقتی معادل 98 درصد عوامل تاثیر گذار بر ورشکستگی شرکتهای ایرانی را در سال قبل از ورشکستگی شناسایی نماید. یافتههای حاصل از بررسی مدل باینری-لجستیک نشان داد که الگوی پیشبینی طراحی شده بر اساس روش رگرسیون فالمر قادر است با دقت 82 درصد ورشکستگی شرکتهای نمونه را مورد پیشبینی قرار دهد. لذا، استفاده از شبکههای عصبی مصنوعی میتواند با قدرت و دقت بیشتری ورشکستگی را نسبت مدلهای رگرسیونی پیشبینی نماید
_||_