Effects of Wind Erosion and Soil Salinization on Dust Storm Emission in Western Iran
الموضوعات :Davoud Akhzari 1 , Behnoush Farokhzadeh 2 , Iman Saeedi 3 , Mohsen Goodarzi 4
1 - Department of Range and Watershed Management, Malayer University, Malayer, Iran
2 - Department of Range and Watershed Management, Malayer University, Malayer, Iran
3 - Landscape Engineering Department, Faculty of Agriculture, Malayer University, Malayer, Iran
4 - Landscape Engineering Department, Faculty of Agriculture, Malayer University, Malayer, Iran
الکلمات المفتاحية: dust storm, Soil salinization, Wind Erosion,
ملخص المقالة :
Dust storms are known as hazardous problems in western part of Iran. Iraq is one of the main sources for dust storm arriving to the western part of Iran. The Radial Basis Function Network model (RBFN) has been used to assess wind erosion hazards in the source area of dust storms over several western Iranian cities. Normalized Difference Salinity Index (NDSI) was used to determine the changes in the source area salinity over the studied years. The RBFN model has been used to assess the wind erosion severity of all land uses in the source area. Generally, NDSI values of all land uses in 2003 were higher than those in 2013. The maximum and minimum mean NDSI values were seen in severely dissected plains and mountainous lands, respectively. The observed differences in the wind erosion hazard maps of 2003, 2005, 2007, 2009, 2011 and 2013 were due to the changes in vegetation percent. Soil salinization caused the source area vegetation degradation and wind erosion exacerbation. So, the occurrences of dust storms in Western parts of Iran have become more frequent. The in situ observations showedthat there were two, five, five, twelve and nine records of pervasive dust storms in western parts of Iran in 2003, 2005, 2007, 2009 and 2011, respectively.
Al-Ansari, N. A., Knutsson, S., 2011. Toward prudent management of water resources in Iraq. Jour. Advanced Science and Engineering Research, 1: 53-67.
Aldakheel, Y., Elprince, A. M. and Al-Hussaini, A. I., 2005. Mapping of salt-affected soils of irrigated lands in arid regions using remote sensing and GIS, Proceedings of the 2nd International Conference on Recent Advantages in Space Technologies, 9–11 June 2005, Istanbul, Turkey, 467–472.
Al-Jumaily, K. J., Ibrahim, M. K., 2013. Analysis of synoptic situation for dust storms in Iraq. International Jour. Energy and Environmental, 4(5): 851-858.
Al-Khalidy, K. A., 2004. Preparation of geographical information system for the South Jazira irrigation project with the aid of remote sensing data, M.Sc. thesis, Mosul University.
AL-Timimi, Y. K., AL-Jiboori M. H., 2013. Assessment of spatial and temporal drought in Iraq during the period 1980-2010. International Jour. Energy and Environment, 4(2): 291-302.
Ashraf, M., Mukhtar, N., Rehman, S. and Rha, E. S., 2004. Salt-induced changes in photosynthetic activity and growth in a potential plant Bishop's weed (Ammolei majus L.). Photosynthetica, 42: 543–50.
Becker, R. H., 2014. The stalled recovery of the Iraqi marshes. Remote Sens., 6: 1260-1274.
Blott, S. J. and Pye, K., 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf., 26: 1237-1248.
Bou-Zeid, E., El-Fadel, M., 2002. Climate change and water resources in Lebanon and the Middle East. Jour. Water Res Pl-Asce., 128(5): 343-355.
Chandana, P. G., Weerasinghe, K. D. N., Subasinghe, S., Pathirana, S., 2004. Remote sensing approach to identify salt-affected soils in Hambantota District. Proceedings of the Second Academic Sessions, 128-133.
Doell, P., Siebert, S., 2002. Global modeling of irrigation water requirements. In: Water Resour. Res., 38: 1010-38.
Ehrlich, D., Lambin, E. F., Malingreau, J. P., 1997. Biomass burning and broad-scale land-cover changes in western Africa. Remote Sens. Environ., 61: 201-209.
Ettershank, G., Ettershank, J., Bryant, M., Whitford, W. G., 1978. Effects of Nitrogen Fertilization on Primary Productivity in a Chihuahuan Desert Ecosystem. Jour. Arid Environ., 1: 135-139.
FAO, 1987. Improving Productivity of Dry land Areas. Committee on Agriculture (Ninth session). FAO, Rome. http://www.fao.org/docrep/meeting/011/ag415e/ag415e04.htm#4.1
Fisher, F. M., Zak, J. C., Cunningham, G. L., Whitford, W. G., 1988. Water and nitrogen effects on growth and allocation patterns of creosote bush in the Northern Chihuahuan Desert. Jour. Range Manage., 41: 387 -391.
Fitzpatrick, E. A., 1980. Soils, Addison-Wesley-Longman, Reading, Mass.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., Van Dorland, R., 2007. Changes in atmospheric constituents and in radioactive forcing. Climate Change 2007: The Physical Science Basis, eds Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Gerivani, H., Lashkaripur, G. H., Ghafoori, M. and Jalili, N., 2011. The source of dust storm in Iran: a case study based on geological information and rainfall data. Carpath. Jour. Earth Env., 6(1): 297-308.
Ghassemi, F., Jakeman, A. J. and Nix, H. A., 1995. Stalinization of land and water resources. CAB International, Wallingford, England.
Gibson, G. R., 2012. War and agriculture: Three Decades of Agricultural Land Use and Land Cover Change in Iraq. Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geospatial and Environmental Analysis. p: 145.
Gillette, D. A., 1978. A wind tunnel simulation of the erosion of soil: effect of soil texture, sandblasting, wind speed and soil condition on dust production. Atmos. Environ., 12: 1735-1743.
Gillette, D. A., Adams, J., Endo, C., Smith, D., 1980. Threshold velocities for input of soil particles into the air by desert soils. Jour. Geohys. Res., 85: 5621-5630.
Gillette, D. A., Blifford, I. H. J., Fenster, C. R., 1972. Measurements of aerosol size distributions and vertical fluxes of aerosols on land subject to wind erosion. Jour. Appl. Meteorol. Clim., 11: 977–987.
Gillette, D. A., Goodwin, P. A., 1974. Microscale transport of sand-sized soil aggregates eroded by wind. Jour. Geohys. Res., 79; 4080-4089.
Gillette, D. A., Walker, T. R., 1977. Characteristics of airborne particles produced by wind erosion of sandy soil, high plains of West Texas. Soil Sci., 123: 97-110.
Gillette, D. A., 1974. On the production of soil wind erosion aerosols having the potential for long-range transport. Jour. Rech. Atmos., 8: 735-744.
Gillies, D. A., Etyemezian, V., Kuhns, H., Nikolic, D., Gillette, D. A., 2005. Effect of vehicle characteristics on unpaved road dust emissions. Atmos. Environ., 39(13): 2341–2347.
Gomes, L., Arrúe, J. L., López, M. V., Sterk, G., Richard, D., Gracia, R., Sabre, M., Gaudichet, A., Frangi, J. P., 2003. Soil aerosol production in a semi-arid agricultural area of Spain: the WELSONS project. Catena, 52 (3-4): 235-256.
Hagen, L. J., 1991. A wind erosion prediction system to meet the users’ need. Jour. Soil and Water Conserv., 46(2): 106-111.
Herrmann, S. M., Anyamba, A., Tucker, C. J., 2005. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Global Environ. Change., 15: 394-404.
Hessing, M. B., Lyon, G. E., Sharp, G. A., Ostler, K. O., 1996. The vegetation of Yucca Mountain, Nevada: Effects of site characterization on vegetation. Las Vegas, Nevada: Office of Civilian Radioactive Waste Management System Management.
Huading, S., Jiyuan, L., Dafang, Z., Yunfeng, H., 2007. Using the RBFN model and GIS technique to assess wind erosion hazard of Inner Mongolia, China. Land Degrad. Dev., 18: 413–422.
Huete, A., Didana, K., Miura, T., Rodriguez, E. P., Gao, X. and Ferreira, L. G., 2002. Overview of radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ., 83: 195–213.
Huxman, T. E., Snyder, K. A., Tissue, D., Leffler, A. J., Ogle, K., Pockman, W. T., Sandquist, D. R., Potts, D. L., Schwinning, S., 2004. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 141: 254–268.
ICARDA, 2013. Iraq salinity assessment. http://www.icarda.org/iraq-salinity-project/assessment IR imagery of Meteosat: 1. Infrared difference dust index, Jour. Geohys. Res., 106 (D16).
James, D. W. and Jurinak, J. J., 1978. Nitrogen fertilization of dominant plants in the Northeastern Great Basin Desert. In West, N.E. Skujins, J. (Eds.), Nitrogen in Desert Ecosystems. Stroudsburg, Pennsylvania: Dowden, Hutchinson, and Ross.
Karimi, N., Moridnejad, A., Golian, S., Samani, J. M. V., Karimi, D. and Javadi, S., 2012. Comparison of dust source identification techniques over land in the Middle East region using MODIS data. Canadian Jour. Remote Sens., 38 (5): 586-599.
Kaul, R. N. and Thalen, D. C. P., 1971. Range ecology at the institute of applied researches in natural resources, Iraq. Nat. Resour., 7: 2-15.
Khan, N. M., Rastoskuev, V. V., Shalina, E. V. and Sato, Y., 2001. Mapping salt-affected soils using remote sensing indicators: A simple approach with the use of GIS IDRISI, Proceedings of the 22nd Asian Conference on
Remote Sensing, 5–9 November 2001, Singapore, unpaginated.
Kind, R. J., 1992. Concentration and mass flux of particles in eolian suspension near tailings disposal sites or similar sources. Jour. Wind Eng. Indus. Aerodyn., 41(44): 217-225.
Kokelj, S. V., Lantz, T. C., Solomon, S., Pisaric, M. F. J., Keith, D., Morse, P., Thienpont, J, R., Smol, J. P., Esagok, D., 2012. Using multiple sources of knowledge to investigate northern environmental change: regional ecological impacts of a storm surge in the outer Mackenzie delta, N.W.T. Arctic, 65(3): 257 – 272.
Kutiel, H. and Furman, H., 2003. Dust storms in the Middle East: sources of origin and their temporal characteristics. Indoor Built Environ., 12: 419–426.
Lambers, H., Chapin, F. S., Pons, T. L., 1998. Plant physiological ecology. Springer, Berlin Heidelberg New York, p 540.
Lauchli, A. and Epstein, E., 1990. Plant responses to saline and sodic conditions and agricultural salinity assessment and management, pp: 113–37. ASCE, New York.
Li, J. and Okin, G. S., Alvarez, L., Epstein, H., 2007. Quantitative effects of vegetation cover on wind erosion and soil nutrient loss in a desert grassland of southern New Mexico, USA. Biogeochemistry, 85: 317–332
Liao, H., Seinfeld, J. H., 1998. Radiative forcing by mineral dust aerosols: Sensitivity to key variables. Jour. Geohys. Res., 103: 31637–31645.
Linderman, M., Rowhani, P., Benz, D., Serneels, S., Lambin, E. F., 2005. Land-cover change and vegetation dynamics across Africa. Jour. Geohys. Res., 4: 110-121.
Loosmore, G. A., Hunt, J. R., 2000. Dust resuspension without salutation. Jour. Geohys. Res., 105(20): 663-672.
Lyon, D. J., Smith, J. A., 2010. Wind erosion and its control. Institute of agriculture and natural resources at the university of Nebraska–Lincoln cooperating with the counties and the United States Department of Agriculture.http://www.ianrpubs.unl.edu/pages/publicationD.jsp?publicationId=130
Marticorena, B., Bergametti, G., 1995. Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. Jour. Geohys. Res., D8 (100), 16: 415-430.
McTainsh, G., Strong, C., 2007. The role of Aeolian dust in ecosystems. Geomorphology, 89: 39–54.
Munns, R., 2003. Comparative physiology of salt and water stress. Plant Cell Environ., 25: 239–50.
Munson, S. M., Belnap, J. and Okin, S. G., 2011. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau. Proceedings of the National Academy of Sciences of the United States of America, 108(10): 3854–3859.
Nagler, P. L., Cleverly, J., Glenna, E., Lampkin, D., Hu, P., 2005. Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data. Remote Sens. Environ., 94: 17–30.
Odeh, I. O. A. and Onus, A., 2008. Spatial analysis of soil salinity and soil structural stability in a semiarid region of New South Wales, Australia. Jour. Environ. Manage., 42(2): 265- 278.
Okin, G. S., 2008. A new model of wind erosion in the presence of vegetation, Jour. Geophys. Res., 113: F02S10,
Peters, D. P. C., Yao, J., Sala, O. E., Anderson, J., 2012. Directional climate change and potential reversal of desertification in arid and semiarid ecosystems. Glob Chang Biol., 18: 151-163.
Prospero, J., Ginoux, M., Torres, P., Nicholson, S. E. and Gill, T. E., 2002. Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Rev. Geophys., 40: 2-31.
Rout, N. P. and Shaw, B. P., 2001. Salt tolerance in aquatic macrophytes: Ionic relation and interaction. Biology of Plant, 55: 91–5.
Seinfeld, J. H., Pandis, S. N., 1998. Atmospheric chemistry and physics: from air pollution to climate change (Wiley, New York).
Setia, R., 2011. Severity of salinity accurately detected and classified on a paddock scale with high resolution multi-spectral satellite imagery. Land Degrad. Dev., doi:10.1002/ldr.1134.
Skidmore, E. L., 1986. Soil erosion by wind. In: El-Baz, F., Hassan, M.H.A., (eds). Physics of desertification. Dordrecht: Martinus Nijhoff Publishers.
Solar and Wind Energy Resource Assessment (SWERA), 2005. Wind energy map of East Asia.http://maps.nrel.gov/swera?visible=swera_wind_nasa_lo_resandopacity=50andextent=38.79,29.06,48.56,37.38
Tegen, I. and Lacis, A. A., 1996. Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. Jour. Geohys. Res., 101:19237-19244.
Tegen, I., Harrison, S. P., Kohfeld, K., Prentice, I. C., Coe, M. T., Heimann, M., 2002. Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study. Jour. Geophysical Research, 107 (D21), AAC 14-1-AAC14-27, 4576.
Trigo, R. M., Gouveia, C. M., Barriopedro, D., 2010. The intense 2007–2009 drought in the Fertile Crescent: Impacts and associated atmospheric circulation. Agricultural and Forest Meteorology, 150, 1245–1257.
Tripathi, N. K., Rai, B. K. and Dwivedi, P., 1997. Spatial Modeling of Soil Alkalinity in GIS Environment Using IRS data. 18th Asian conference on remote sensing, Kualalampur, 81- 86.
USDA, 2012. Climate change may help restore arid grasslands. file:///D:/NDSI/USDA.htm.
Yan, Y., Xu, X., Xin, X., Yang, G., Wang, X., Yan, R., Chen, B., 2011. Effect of vegetation coverage on aeolian dust accumulation in a semiarid steppe of northern China. Catena, 87: 351–356.
Zakaria, S., 2012. Rain water harvesting at Eastern Sinjar Mountain, Iraq. Jour. Geohys. Res., 3(2): 100-108. (In Persian).
Zhang, T. T., 2011. Assessing impact of land uses on land salinization in the Yellow River Delta, China using an integrated and spatial statistical model. Land Use Pol., 28: 857-866.
Zhibao, D., Xunming, W., Lianyou, L., 2000. Soil and water conservation society. All rights reserved. Jour. Soil Water Conserv., 55(4): 439-444.
Zhu-Guo, M., Cong-Bin, F., Dan, L., 2005. Decadal variations of arid and semi-arid boundary in China. Chinese Jour. Geophy., 48(4): 574-581.
Zobler, L., 1986. A world soil file for global climate modeling, Tech. Rep. NASA TM– 87802, 32 pp., NASA, Washington, D. C.