Effects of a Growth Season Rain Pulse on Physiological Parameters and Phytochemical Compounds of Caper (Capparis spinosa L.)
الموضوعات :Fatemeh Agah 1 , Mohammad Esmaeili 2 , Mohammad Farzam 3 , Rahmat Abbasi 4
1 - Sari Agricultural Sciences and Natural Resources University, Sari, Iran
2 - Department of Agronomy, Faculty of Agronomy Science, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
3 - Ferdowsi University f Mashhad
4 - Department of Agronomy, Faculty of Agronomy Science, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
الکلمات المفتاحية: Medicinal Plants, Secondary metabolites, Arid-land plants, Eco-physiology,
ملخص المقالة :
Growth season rain pulses affect biological and physiological activities of wild plants in arid and semi-arid regions. Despite of numerous reports on the effects of rain pulses on plant physiological indices, there is little information on how rain pulses may affect secondary metabolites of medicinal plants. Caper (Capparis spinosa L.) plays a critical role on soil conservation and economy of arid and sub-tropical inhabitants. Accordingly, present research was conducted to investigate the physiological and phytochemical responses of caper to a growth season rainfall in its natural habitat in Mazdavand, Sarakhs, Iran. Leaf samples (4 replicates) were taken 2, 4, 7 and 10 days after a natural rain event (10 mm) in 17 May 2018. Results showed increase of antioxidant enzymes (catalase and ascorbate peroxidase activity by 77 and 34 %, respectively) and decrease (23%) in proline content by the day after the rain pulse, whereas, photosynthetic pigments were not affected by soil moisture changes. Total alkaloid content was higher (16%) in vegetative than reproductive phase. From the secondary metabolites and 14 major phytochemical compounds detected in leaf extract, phenol content was reduced whereas alkaloid content increased by decreasing soil moisture during the days after rainfall. In conclusions, the phytochemical compounds showed contrasting (increase or decrease) responses to the soil moisture pulse and inter-pulse conditions. These results indicate the best time of leaf harvest to achieve highest concentrations of specific secondary metabolites after the growth season rain pulses.
Agah, F., Esmaeili, M. A., Farzam, M., Abasi, R., 2020. Modeling of Capparis spinosa L. growth in natural habitat for cultivation in low input farming systems. Iranian Journal of Medicinal and Aromatic Plants, 35(6), 1002-1016. http://doi.org/10.22092/IJMAPR.2020.127872.2645. (In Persian,).
Akula, R., Ravishankar, G. A., 2014. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 6(11), 1720-1731. https://doi.org/10.4161/psb.6.11.17613
Amirjani, M. R., 2013. Effects of drought stress on the alkaloid contents and growth parameters of Catharanthus roseus. ARPN Journal of Agricultural and Biological Science, 8(11), 745-750.
Bates, L. S., Waldren, R. P., Teare, I. D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207. https://doi.org/10.1007/BF00018060
Blokhina, O., Virolainen, E., Fagestedt, K. V., 2003. Antioxidants, oxidative damage and oxygen privation stress: A review. Annals Botany, 91(2), 179-194. https://doi.org/10.1093/aob/mcf118
Bettaieb, I., Zakhama, N., Wannes, W. A., Kchouk, M. E., Marzouk, B., 2008. Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Science Journal of Horticulture, 120 (2), 271-275. https://doi.org/10.1016/j.scienta.2008.10.016
Boscaiu, M., Sanchez, M., Bautista, I., Donat, P., Lidon, A., Lliinares, J., Llul, C., Mayoral, O., Vicente, O., 2010. Phenolic compounds as stress markers in plants from gypsum habitats. Bulletin UASVM Horticulture, 67(1), 44-49.
Chang, C., Yang, M., Wen, H., Chen, J., 2002. Estimation of total flavonoid content in Propolis by two complementary colorimetric methods. Journal of Food and Drugs Analysis, 10 (3), 178-182. https://doi.org/10.38212/2224-6614.2748
Chehrit-Hacid, F., Derridj, A., Moulti-Mati, F., Mati, A., 2015. Drought stress effect on some biochemical and physiological parameters; accumulation of total polyphenols and flavonoids in leaves of provenance seedlings Pistacia lentiscus. International Journal of Research in Applied Natural and Social Sciences, 3(9), 127-138.
Daniels, C. W., Rautenbach, F., Marnewick, J. L., Valentine, A. J., Babajide, O. J., Mabusela, W. T., 2015. Environmental stress effect on the phytochemistry and antioxidant activity of a South African bulbous geophyte, Gethyllis multifolia L. Bolus. South African Journal of Botany, 96, 29-36. https://doi.org/10.1016/j.sajb.2014.10.004
Fici S., 2014. A taxonomic revision of the Capparis spinosa group (Capparaceae) from the Mediterranean to Central Asia. Phytotaxa, 174 (1), 001–024. https://doi.org/10.11646/phytotaxa.174.1.1
Gebauer, R. L. E., Schwinning, S., Ehleringer, J. R., 2002. Interspecific competition and resource pulse utilization in a cold desert community. Ecology, 83(9), 2602-2616. https://doi.org/10.1890/0012-9658(2002)083[2602:ICARPU]2.0.CO;2
Gebauer, R. L. E., Ehleringer, J. R., 2000. Water and nitrogen uptake patterns following moisture pulses in a cold desert community. Ecology, 81(5), 1415–1424. https://doi.org/10.1890/0012-9658(2000)081[1415:WANUPF]2.0.CO;2
Golluscio, R. A., Sala, O. E., Lauenroth, W. K., 1998. Differential use of large summer rainfall events by shrubs and grasses: a manipulative experiment in the Patagonian steppe. Oecologia, 115, 17–25. https://doi.org/10.1007/s004420050486
Hao, Y. B., Kang, X. M., Cui. X. Y., Ding, K., Wang. Y. F., Zhou, X. Q., 2012. Verification of a threshold concept of ecologically effective precipitation pulse: From plant individuals to ecosystem. Ecological Informatics, 12, 23-30. https://doi.org/10.1016/j.ecoinf.2012.07.006
Huang. L., Zhang. Zh., 2016. Effect of rainfall pulses on plant growth and transpiration of two xerophytic shrubs in a revegetated desert area: Tengger Desert, China. Catena, 137, 269-276. https://doi.org/10.1016/j.catena.2015.09.020
Jankju-Borzelabab, M., Griffiths, H., 2006. Competition for pulsed resources: an experimental study of establishment and coexistence for an arid-land grass. Oecologia, 148, 555-563. https://doi.org/10.1007/s00442-006-0408-1
Kulisic-Bilusic, T., Schmöller. I., Schnäbele. K., Siracusa. L., Ruberto, G., 2012. The anticarcinogenic potential of essential oil and aqueous infusion from caper (Capparis spinosa L.). Food Chemistry, 132(1), 261-267. https://doi.org/10.1016/j.foodchem.2011.10.074
Lansky, E. P., Paavilainen, H. M., Lansky, Sh., 2014. Caper The Genus Capparis. CRC Press, Taylor & Francis Group, pp: 334.
Ladron de Guevara, M., Lazaro. R., Amau-Rosalen. E., Domingo. F., Molina-Sanchis. I., Mora. J. L., 2015. Climate changes effects in a semiarid grassland: Physiological responses to shifts in rain patterns. Acta Oecologica, 69, 9-20. https://doi.org/10.1016/j.actao.2015.08.001
Legua, P., Martínez. J. J., Melgarejo. P., Martínez. R., Hernández, F., 2013. Phenological growth stages of caper plant (Capparis spinosa L.) according to the Biologische Bundesanstalt, Bundessortenamt and CHemical scale. Annals of Applied Biology, 163(1), 135–141. https://doi.org/10.1111/aab.12041
Li, X., Wang, Y., Yan, X. F., 2007. Effects of water stress on berberine, jatrorrhizine and palmatine contents in amur corktree seedlings. Acta Ecologica Sinica, 27(1), 58-63. https://doi.org/10.1016/S1872-2032(07)60011-0
Lichtenthaler, H. K., 1987. Chlorophylls and carotenoids: Pigments of photosynthetic bio membranes. Methods in Enzymology, 148, 350-382. https://doi.org/10.1016/0076-6879(87)48036-1
Liu, W., He. Y., Xiang. J., Fu. C., Yu. L., Zhang. J., Li, M., 2011. The physiological response of suspension cell of Capparis spinosa L. to drought stress. Journal of Medicinal Plants Research, 5(24), 5899-5906.
Liu, H., Wu, C., Yu, Y., Zhao, W., Yang, Q., Wang, S., Liu, J., 2020. Modeling the physiological responses of a desert shrub to rainfall pulses in an arid environment in northwestern China. Journal of Arid Environments, 183, article 104277. https://doi.org/10.1016/j.jaridenv.2020.104277
Mano, Y., Nabehima. S., Matsui. C., Ohkawa, H., 1986. Production of tropane alkaloids by hairy root cultures of Scopolia japonica. Agricultural and Biological Chemistry, 50(11), 2715-2722. https://doi.org/10.1080/00021369.1986.10867820
Matsuyama, K., Villareal, M.O., El Omri. A., Han, J., Kchouk, M. E., Isoda, H., 2009. Effect of Tunisian Capparis spinosa L. extract on melanogenesis in B16 murine melanoma cells. Journal of Natural Medicines, 63(4), 468-472. https://doi.org/10.1007/s11418-009-0355-3
Misra, A., Sricastatva, N. K., 2000. Influence of water stress on Japanese mint. Journal of Herbs, Spices and Medicinal Plants, 7(1), 51-58. https://doi.org/10.1300/J044v07n01_07
Noy-Meir, I., 1973. Desert ecosystems: Environment and producers. Annual Review of Ecology and Systematic, 4, 25-51. https://doi.org/10.1146/annurev.es.04.110173.000325
Quan, N.T., Anh, L.H., Khang, D.T., Tuyen, P.T., Toan, N.P., Minh, T.N., Minh, L.T., Bach, D.T., Ha, P.T.T., Elzaawely, A.A., Khanh, T.D., Trung, K.H., Xuan, T.D., 2016. Involvement of secondary metabolites in response to drought stress of Rice (Oryza sativa L.). Agriculture, 6(2), 23. https://doi.org/10.3390/agriculture6020023.
Ozkur, O., F. Ozdemir, M. Bor, and I. Turkan., 2009. Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. Environmental and Experimental Botany, 66(3), 487–492. https://doi.org/10.1016/j.envexpbot.2009.04.003
Qiyue, Y., Wenzhi, Z., Bing, L., Hu, L., 2014. Physiological responses of Haloxylon ammodendron to rainfall pulses in temperate desert regions, Northwestern China. Trees, 28(3), 709-722. https://doi.org/10.1007/s00468-014-0983-4
Sampaio, B. L., Edrada-Ebel, R., Da Costa, F. B., 2016. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants. Scientific Reports, 6, 29265. https://doi.org/10.1038/srep29265
Selmar, D., Kleinwächter, M., 2013. Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Industrial Crops and Products, 42, 558-566. https://doi.org/10.1016/j.indcrop.2012.06.020
Siddiqui, Z. S., Shahid, H., Cho, J., Park, S. H., Ryu, T. H., Park, S. C., 2016. Physiological responses of two halophytic grass species under drought stress environment. Acta Botanica Croatica, 75(1), 31-38. https://doi.org/10.1515/botcro-2016-0018
Slinkard, K., Singleton, V. L., 1977. Total phenol analysis; automation and comparison with manual methods. American Journal of Enology and Viticulture, 28, 49-55.
Sofo, A., Manfreda, S., Dichio, B., Florentino, M., Xiloyannis, C., 2008. The olive tree: a paradigm for drought tolerance in Mediterranean climates. Hydrology and Earth System Science, 12, 293-301. https://doi.org/10.5194/hessd-4-2811-2007
Srinivas, N. D., Rashmi, K. R., Raghavarao, K. S. M. S., 1999. Extraction and purification of a plant peroxidase by aqueous two-phase extraction coupled with gel filtration. Process Biochemistry, 35(1-2), 43-48. https://doi.org/10.1016/S0032-9592(99)00030-8
Tang, Y., Jiang, J., Chen, C., Chen, Y., Wu, X., 2018. Rainfall pulse response of carbon fluxes in a temperate grass ecosystem in the semiarid Loess Plateau. Ecology and Evolution, 8, 11179-11189. DOI: 10.1002/ece3.4587
Tlili, N., Mejri, H., Anouer, F., Saadaoui, E., Khaldi, A., Nasri, N., 2015. Phenolic profile and antioxidant activity of Capparis spinosa seeds harvested from different wild habitats. Industrial Crops and Products, 76, 930-935. https://doi.org/10.1016/j.indcrop.2015.07.040
Tlili, N., Munne-Bosch, S., Nasri, N., Saadaoui, E., Khaldi, A., Triki, S., 2009. Fatty acids, tocopherols and carotenoids from seeds of Tunisian caper “Capparis spinosa”. Journal of Food Lipids, 16(4), 452-464. https://doi.org/10.1111/j.1745-4522.2009.01158.x
Trabelsi, N., Waffo-Te´guo, P., Snoussi, M., Ksouri, R., Me´rillon, J. M., Smaoui, A., Abdelly, C., 2013. Variability of phenolic composition and biological activities of two Tunisian halophyte species from contrasted regions. Acta Physiologiae Plantatum, 35, 749–761. https://doi.org/10.1007/s11738-012-1115-7
Toscano, S., Farieri, E., Antonio, F., Romano, D., 2016. Physiological and biochemical responses in two ornamental shrubs to drought stress. Frontiers in Plant Science, 7, 645. https://doi.org/10.3389/fpls.2016.00645.
Velikova, V., Yordanov, I., Edreva, A., 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Science, 151(1), 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1
Wei, H., Li, L., Yan, X., Wang, Y., 2013. Effects of soil drought stress on the accumulation of alkaloids and flavonoids in Motherwort. Advance in information sciences and service sciences, 5(6), 795-803.
Xiao, X., Xu, X., Yang, F., 2008. Adaptive responses to progressive drought stress in two Populus cathayana populations. Silva Fennica, 42(5), 705-719. https://doi.org/10.14214/sf.224
Xiong, P., Shu, J., Zhang, H., Jia, Z., Song, J., Palta, J. A., Xu, B. 2017. Small rainfall pulses affected leaf photosynthesis rather than biomass production of dominant species in semiarid grassland community on Loess Plateau of China. Functional Plant Biology, 44, 1229-1242. https://doi.org/10.1071/FP17040
Yamaguchi, K., Mori, H., Nishimura, M., 1995. A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant Cell Physiology, 36(6), 1157-1162. https://doi.org/10.1093/oxfordjournals.pcp.a078862
Yoda, K., Tsuji, W., 2015. Evaluation of the Effect of a Rain Pulse on the Initial Growth of Prosopis Seedlings. Arid Land Research and Management, 29(2), 210-221. doi.org/10.1080/15324982.2014.943376
Wang, Y., Li, X., Zhang, C., Wu, X., Du, E., Wu, H., Yang, X., Wang, P., Bai, Y., Wu, Y., Huang, Y. 2019. Responses of soil respiration to rainfall addition in a desert ecosystem: Linking physiological activities and rainfall pattern. Science of the Total Environment, 650, 3007-3016. https://doi.org/10.1016/j.scitotenv.2018.10.057
Zeppel, M., Macinnis-Ng, C.M.O., Ford, C. R., Eamus, D., 2008. The response of sap flow to pulses of rain in a temperate Australian woodland. Plant and Soil, 305, 121-130. https://doi.org/10.1007/s11104-007-9349-7
Zhang, L., Wang, Q., Guo, Q., Chang, Q., Zhu, L., Liu, L., Xu. H., 2012. Growth, physiological characteristics and total flavonoid content of Glechoma longituba in response to water stress. Journal of medicinal plants research, 6(6), 1015-1024. https://doi.org/10.5897/JMPR11.758