Identifying Carbon Sequestration Hotspots in Semiarid Rangelands (Case study: Baghbazm region of Bardsir city, Kerman province)
الموضوعات :
Azam Khosravi Moshizi
1
,
Gholam Ali Heshmati
2
,
Abdol Rassoul Salman Mahiny
3
1 - Agriculture science and Natural Resources University of Gorgan
2 - Agriculture science and Natural Resources University of Gorgan
3 - Agriculture science and Natural Resources University of Gorgan
تاريخ الإرسال : 06 الأربعاء , شوال, 1436
تاريخ التأكيد : 07 الثلاثاء , محرم, 1437
تاريخ الإصدار : 18 الخميس , ذو الحجة, 1436
الکلمات المفتاحية:
soil,
Kerman,
Hotspots Analysis,
Carbon,
Phanerophyte,
ملخص المقالة :
Carbon sequestration in rangeland ecosystems has been identified as a suitable strategy to offset greenhouse gas emissions that information of carbon sequestration hotspots is a good tool to improve rangeland management. Objectives for this study were to assessment potential carbon sequestration in various rangeland types, to identify carbon sequestration hotspots and to study the effective factor on hotspots in semiarid rangeland of Kerman province. The content of above and underground biomass and litter carbon by Ash method and soil carbon by Walcky-Black method were determined in 300 plots 2m×2m that scattered randomly in rangeland types. Results showed that rangeland types had significant effect on carbon sequestration as Zygophyllum eurypterum-Artemisia sieberi, Artemisia sieberi-Pteropyrum aucheri, Astragalus microcephalus –Stipa barbata, Artemisa sieberi and Artemisia sieberi- Salsola brachiata respectively with 65.84, 53.92, 43.32, 33.17 and 24.77 (T/ha) contained from the highest to the lowest carbon sequestration. Carbon sequestration hotspots and coldspots were mapped by using hotspots analysis. Zygophyllum eurypterum-Artemisia sieberi and small parts of both types Artemisia sieberi-Pteropyrum aucheri and Astragalus microcephalus–Stipa barbata with 65.34 (T/ha) were carbon sequestration hotspots. Majority of Artemisia sieberi-Salsola brachiata and small parts of Artemisa sieberi with 23.78 (T/ha) included carbon sequestration coldspots. PCA analysis also showed that life form, clay and vegetation cover were the most important factors influencing on the hotspots. It was concluded although rangeland types demined with Phanerophyte species had a greater probability of being identified as carbon sequestration hotspots, soil characters also play effective role to stock carbon in semiarid rangeland ecosystems.
المصادر:
Abdi, N., MaddahArefi, H., Zahedi Amiri, G. H., 2008. Estimation of carbon sequestration in
Astragalus rangelands of Markazi province (case study: Malmi rangeland in Shazand region),
Iranian Jour. Range and Desert Research, 15 (2): 269-282. (In Persian).
Ahmadi, H., 2009. Comparing the carbon sequestration in Saxaoul forests and desert grasslands for sandy lands management in south of Namak lake., M.Sc. thesis on Range Management, Agricultural Sciences and Natural Resources University of Gorgan,75 p. (In Persian).
Anselin, L., 1995. Local indicators of spatial association dLISA. Geogr. Anal, 27, 93p.
Bahrami, B., Erfanzadeh, R., Motamedi, J., 2013. Effect of slope and vegetation on carbon sequestration in a semi-dry rangeland of western Iran, case study: Khanghah Sorkh, Urmia.
Jour. Water and Soil, 27 (4): 703-711. (In Persian).
Bai, Y., Colberg, T., Romo, J. T., McConkey, B., Pennock, D., Farrell, R., 2009. Does expansion of western snowberry enhance ecosystem carbon sequestration and storage in Canadian Prairies?.
Agriculture, Ecosystems and Environment, 134: 269-276.
Bird, S. B., Herrick, J. E., Wander, M. M., 2001. Exploiting heterogeneity of soil organic matter in rangelands: benefits for carbon sequestration. In: Follett, R.F., Kimble, J.M., Lal, R. (Eds.), The Potential of U.S. Grazing lands to sequester carbon and mitigate the greenhouse effect. CRC Press, Boca RaT FL, USA.
Blake, G. R. and Hartge, K. H., 1986. Bulk density–core method. In: Klute, A. (Ed.), Methods of soil analysis, Part 1, 2nd Edition Agronomy Monograph 9. American Society of Agronomy, Madison, Wisconsin, USA, pp. 363–375.
Brown, J. R., Angerer, J., Stuth, J. W., Blaisdell, B., 2006. Soil carbon dynamics in the Southwest: Effects of changes in land use and management. Phase I Final Report of the Southwest Regional Partnership on Carbon Sequestration. http:// southwestcarbonpartnership.org/.
Cochran, W. G., 1977. Sampling techniques. 3nd edition, Whley and Sons, USA, 428 pp.
Daily, G. C. and Matson, P. A., 2008. Ecosystem services: from theory to implementation. Proceedings of the National Academy of Sciences of the United State of America, 105 (28): 9455–9456.
Davidson, E. A. and Janssens, I. A., 2006. Temperature sensitivity of soil carbon decomposition and Feed backs to climate change.
Nature, 440 (7081): 165–73.
Drake, J. M. and Lodge, D. M., 2004. Global hotspots of biological invasions: evaluating options for ballast-water management.
Proc. R. Soc. London B., 271: 575-580.
Dregne, H. E. and Choun, N. T., 1992. Global desertification dimensions and costs. In: Dregne, H. E. (Ed.), Degradation and Restoration of Arid Lands. Texas Tech. University, Lubbock, pp. 249-282.
Ehrenfeld, J. G., Ravit, B., Elgersma, K., 2005. Feedback in the plant-soil system, Annual Review of Environment and Resources. 30: 75-15.
Eldridge, D. J., Bowker, M. A., Maestre, F. T., Roger, E., Reynolds, J. F., Whitford, W.G., 2011. Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecology Letters, 14: 709–722.
Follett, R. F., Kimble, J. M., Lal, R., 2001. The potential of U.S. grazing lands to sequester carbon and mitigate the greenhouse effect. CRC Press, Boca RaT FL, USA.
Galantini, J. A., Senesi, N., Brunetti, G., Rosell, R., 2004. Influence of texture on organic matter distribution and quality and nitrogen and sulphr status in semiarid Pampean grassland soils of Argentina.
Geoderma, 123: 143–152.
Gallo, M. E., Sinsabaugh, R. L., Cabaniss, S. E., 2006. The role of ultraviolet radiation in litter decomposition in arid ecosystems.
Appl Soil Ecol, 34: 82–91.
Getis, A., Ord, J. K., 1992. The analysis of spatial association by use of distance statistics.
Geogr.Anal. 24: 189-206.
Hoekstra, J. M., Boucher, T. M., Ricketts, T. H., Roberts, C., 2005. Confronting a biome crisis: global disparities of habitat loss and protection.
Ecol. Lett., 8: 23–29.
IPCC, 2001. Climate Change 2001. The Scientific Basis. IPCC third assessment report, Working group I.
IPCC, 2007. Summary for Policymakers. In: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Kareiva, P., Marvier, M., 2003. Conserving biodiversity coldspots.
Am. Sci. 91: 344–351.
Karimi, A., Brown, G., Hocking, G., 2015. Methods and participatory approaches for identifying social ecological hotspots.
Applied Geography, 63: 9-20.
Lal, R., 2004. Soil carbon sequestration to mitigate climate change.
Geoderma, 123: 1-22.
MacDicken, K. G., 1997. A guide to monitoring carbon storage in forestry and agroforestry projects. Winrock Internationl Institute for Agricultural Development, Forest Carbon Monitoring Program.
Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T.M., Gascon, C., 2011. Global biodiversity conservation: the critical role of hotspots. In: Zachos, F.E., Habel, J. C. (Eds.), Biodiversity Hotspots. Springer Publishers, London, pp. 3–22.
Monger, H. C. and Martinez-Rios, J. J., 2001. Inorganic carbon sequestration in grazing lands. In: Follett, R. F., Kimble, J. M., Lal, R. (Eds.), The Potential of U.S. Grazing Lands to Sequester Carbon and Mitigate the Greenhouse Effect. CRC Press, Boca RaT, FL., USA, pp. 87–118.
Mwakalila, S., Balmford, A., Burgess, N. D., Marshall, A.R., Lewis, S.L., 2010. Mapping socio-economic scenarios of land cover change: a GIS method to enable ecosystem service modeling.
Jour. Environmental Management, 92(3): 563-574.
Nelson, D. W. and Sommers, L. E., 1982. Total carbon, organic carbon, organic matter. In: Page, A.L., Miller, R.H., Kenney, D.R. (Eds.(, Methods of Soil Analysis, Part 1, 2nd Edition. Agronomy Monograph 9. American Society of Agronomy, Madison, Wisconsin, USA, pp. 539–580.
Reid N., Stafford-smith D., Beyer-Munzel P., Marroquin J., 1990. Floristic and structural variation in the Tamaulipan thornscrub, Northeastern Mexico.
Jour. vegetation science, 1: 529-538.
Sayre, N. R., 2004. Interacting effects of landownership, land use, and endangered species on conservation of Southwestern U.S. rangelands.
Conservation Biology, 19: 783–792.
Schuman, G. E., Janzen, H. H., Herrick, J. E., 2002. Soil carbon dynamics and potential carbon sequestration by rangelands.
Environmental Pollution, 116: 391–396.
Singh, G., Bala, N., Chaudhuri, K.K., Meena, R.L., 2003. Carbon sequestration potential of common access resources in arid and semi-arid regions of northwestern India.
Indian Forester, 129(7): 859-864.
Snorrason, A., Sigurdsson, B. D., Gudbergsson, G., Svavarsdottir, K., Jonsson, T. H. H., 2002. Carbon sequestration in forest plantations in Iceland.
Buvisindi, 15: 81-93.
Su, Y. Z, 2007. Soil carbon and nitrogen sequestration following the conversion ofcropland to alfalfa forage land in northwest China.
Soil and Tillage Research, 92 (10): 181-189.
Swetnam, R. D., Fisher, B., Mbilinyi, B. P., Munishi, P. K. T., Willcock, S., Ricketts, T., Mwakalila, S., Balmford, A., Burgess, N. D., Lewis, S.L., 2011. Mapping socio-economic scenarios of land cover change: a GIS method to enable ecosystem service modeling
. Jour. Environ Manage, 92 (3): 563-74.
Tatian, M. R., 2001. Phyto-sociology of Hezarjarib Rangelands. M.Sc. thesis Natural Resources Faculty of Mazandaran University. 129p.
Timilsina, N., Escobedo, F. J., Cropper Jr, W. P., Abd-Elrahman, A., Brandeis, T. J., Delphin, S., Lambert, S., 2013. A framework for identifying carbon hotspots and forest management drivers.
Jour. Environmental Management, 14: 293-302.
Turner, R. K. and Daily, G. C., 2008. The ecosystem services framework and natural capital conservation.
Environmental and Resource Economics, 39: 25–35.
Torri, D., Santi, E., Marignani, M., Rossi, M., Borselli, L., Maccherini, S., 2013. The recurring cycles ofbiancanabadlands: Erosion, vegetation and human impact. Catena, 106: 22–30.
Van veen, J. A., Liljeroth, E., Lekkerkerk, L. J. A., 1991. Carbon fluxes in plant–soil systems at elevated atmospheric CO levels.
Ecol. Appl., 1, 175–181.
Walker, B. H. and Janssen, M. A., 2002. Rangelands, pastoralists and governments: interlinked systems of people and nature. Philosophical Transactions of the Royal Society of London B, 357: 719-725.
Worm, B., Lotze, H. K., Myers, R. A., 2003. Predator diversity hotspots in the blue ocean.
Proc. Natl. Acad. Sci., USA, 100: 9884–9888.
Wu, J., Feng, Zh., Gaob, Y., Peng, J., 2013. Hotspot and relationship identification in multiple landscape services: A case study on an area with intensive human activities.
Ecological Indicators, 29: 529-537.
Yang, H., Li, X., Wang, Z., Jia, R., Liu, L., Chen, Y., Wei, Y., Gao, Y., Li, G., 2014. Carbon sequestration capacity of shifting sand dune after establishing new vegetation in the Tengger desert, northern China. Science of the Total Environment, 478: 1–11.