Cryopreservation of Ammodendron persicum (Bunge ex Boiss.) Seeds and Evaluation of the Cryogenic Seeds under Various Conditions
الموضوعات :Mohebbat Ali Naderi Shahab 1 , Maryam Jebelly 2 , Ali Ashraf Jafari 3
1 - Assistant Professor, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
2 - Researcher, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
3 - Professor, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
الکلمات المفتاحية: Desiccation, Seed, cryopreservation, PVS2, Ammodendron persicum, 30% Glycerol,
ملخص المقالة :
Ammodendron persicum (Bunge & Boiss.)is a desert shrub specie which grows on some sand dunes and sandy areas of South Khorasan and Sistan-va-Baluchestan provinces in east of Iran. Low distribution and narrow ecological range have put this species under threat. In order to evaluate the possibility of long-term preservation of A. persicum seeds in cryogenic conditions (-196°C), the seeds of species were collected from its natural habitats and three pre-cryopreservation treatments including PVS2, Desiccation, and 30% Glycerol as well as non-treated (Control) were applied before transferring the seeds into Liquid Nitrogen (LN) or at -196°C. The treated seeds were incubated in LN for a period of 1 week. Subsequently, the cryopreserved seeds were removed from the LN and subjected to post-cryopreservation treatment. Seed germination and establishment were evaluated under laboratory, greenhouse and natural conditions. The laboratory results showed that seeds of the A. persicum species can tolerate cryogenic conditions. The effects of the pre-cryopreservation treatments including Desiccation, 30% Glycerol, and PVS2, and non-treated (Control) one on germination of cryopreserved seeds were significantly different. The non-treated (Control) and Desiccation, respectively showed the best effects on the survival rate (51%) and other attributes of the cryopreserved seeds. The results revealed that the cryopreserved seeds were also able to germinate and establish under greenhouse and desert conditions. In this study, the appropriate seeding depth, the seed sowing time and factors affecting the seed germination as well as establishments under natural conditions were evaluated. The results revealed that cryopreservation approach is the most promising method for long-term preservation of the A. persicum seeds. Long-term seed preservation via cryopreservation is an important approach to prevent this species from loss of genetic diversity and risk of extinction
Abdul-Baki, A. A., Anderson, J. D., 1973. Vigour determination in soybean seed by multiple criteria. Crop Science, 13: 630-633.
Berjak, P., Pammenter, N. W., 2002. Orthodox and Recalcitrant seeds. Vozzo, J., (ed.). Tropical Tree Seed Handbook. USDA, 137-147.
Caswell, K. L., Kartha, K. K., 2009. Recovery of plants from pea and strawberry meristems cryopreserved for 28 years. CryoLetters, 30: 41–46.
Chaireok, S., Thammasiri, K., Meesawat, U., 2016. Vitrification-based cryopreservation of protocorm-like bodies of an endangered lady's slipper orchid: Paphiopedilum niveum (Rchb.f.) Stein. CryoLetters, 37(3): 154-162.
Ferrari, P. E. A., Colombo, R. C., Faria, R. T., Takane, R. J., 2016. Cryopreservation of seeds of Encholirium spectabile Martius ex Schultes F. by the vitrification method. Revista Ciência Agronômica, 47(1): 172-177.
Funnekotter, B., Whiteley, S. E., Turner, S. R., Bunn, E., Mancera, R. L., 2015. Evaluation of the new vacuum infiltration vitrification (VIV) cryopreservation technique for native Australian plant shoot tips. CryoLetters, 36(2): 104-113.
González-Benito, M. E., Pérez-Garcia, F., 2001. Cryopreservation of lipid-rich seeds: effect of moisture content and cooling rate on germination. CryoLetters, 22: 135-140.
Höfer, M., 2016. Cryopreservation of in vitro shoot tips of strawberry by the vitrification method –establishment of a duplicate collection of Fragaria germplasm. CryoLetters, 37(3): 163-172.
Jitsopakul, N., Thammasiri, K., Ishikawa, K., 2008. Cryopreservation of Bletilla striata mature seeds, 3-day germinating seeds and protocorms by droplet vitrification. CryoLetters, 29: 517-526.
Kim, J. B., Kim, H. H., Baek, H. J., Cho, E. G., Kim, Y. H., Engelmann, F., 2005. Changes in sucrose and glycerol content in garlic shoot tips during freezing using PVS3 solution. CryoLetters, 26: 103-112.
Kushnarenko, S. V., Romadanova, N. V., Reed, B. M., 2009. Cold acclimation improves regrowth of cryopreserved apple shoot tips. CryoLetters, 30: 47-54.
Li, M., Zhao, X., Hong, S., Zhang, X., Li, P., Liu, J., Xie, C., 2009. Cryopreservation of plantlet nodes of Dioscorea opposita Thunb. using a vitrification method. CryoLetters, 30(1): 19-28.
Liu, H., Yu, W., Dai, J., Gong, Q., Yang, K., Lu, X., 2003. Cryopreservation of protoplasts of the alga Porphyra yezoensis by vitrification. Plant Science, 166: 97-102.
Mata-Rosas, M., Lastre-Puertos, E., 2015. Long-term conservation of protocorms of Brassavola nodosa (L) Lind. (Orchidaceae): effect of ABA and a range of cryoconservation techniques. CryoLetters, 36(5): 289-298.
Mišianiková, A., Zubrická, D., Petijová, L., Bruňáková, K. Eva Čellárová, E., 2016. Effect of cryoprotectant solution and of cooling rate on crystallization temperature in cryopreserved Hypericum perforatum cell suspension cultures. CryoLetters, 37(3): 173-187.
Naderi Shahab, M., Jebelli, M., Jafari, A. A., 2017. Cryopreservation of Smirnovia iranica (Sabeti) seeds and evaluation of cryopreserved seeds under laboratory, greenhouse and natural habitat conditions. Journal of Rangeland Science, 7(2): 122-137.
Naderi Shahab, M., Jebelli, M., Shahmoradi, A. A., Jafari A. A., 2013. Seed cryopreservation and evaluation of Ferula gummosa and Kelussia odoratissima. Seed Technology Journal, 31: 103-116.
Naderi Shahab, M., Hatami, F., Tabari, M., Jafari, A. A., 2009. Cryopreservation and evaluation of chinese arbor-vitae (Biota orientalis) Seeds. Journal of New Seeds, 10: 264-276.
Pammenter, N. W., Berjak, P., 2014. Physiology of desiccation-sensitive (recalcitrant) seeds and the implications for cryopreservation. International Journal of Plant Science, 175(1): 21–28.
Park, S., Kimm, H., 2015. Cryopreservation of sweet potato shoot tips using a droplet vitrification procedure. CryoLetters, 36(5): 344-352.
Pital, J. M., Sanz, V., Escudero, A., 1998. Seed cryopreservation of seven Spanish native pine species. Silvae Genetica , 47: 220-223.
Popova, E.V., Kim, D. H., Han, S. H., Pritchard, H. W., Lee, J. C., 2012. Narrowing of the critical hydration windows for cryopreservation of Salix caprea seeds following ageing and reduction in vigour. CryoLetters, 33: 219-230.
Rafique, T., Yamamoto, S., Fukui, K., Mahmood, Z. Niino, T., 2015. Cryopreservation of sugarcane using the V cryo-plate technique. CryoLetters, 36(1): 51-59.
Rechinger, K. H., 1984. Flora Iranica. No. 157 (Papilionaceae II), Page 23. Akademische Druk- u. Verlagsanstalt. Graz, Austria.
Roberts, E. H., 1973. Predicting the storage life of seeds. Seed Science and Technology, 1: 499–514.
Sakai, A., Engelmann, F., 2007. Vitrification, encapsulation and droplet-vitrification: A review. CryoLetters, 28: 151–172.
Sacandé, M., Jøker, D., Dulloo, M. E., Thomsen, K. A., (Eds.) (2004). Comparative storage biology of tropical tree seeds. IPGRI, Rome, Italy.
Schoenweiss, K., Meier-Dinkel, A., Grotha, F., 2005. Comparison of cryopreservation techniques for long-term storage of Ash (Fraxinus excelsior L.). CryoLetters, 26: 201-212.
Safarnejad, A., Abbasi, M., 2010. Karyology of Ammodendron persicum (Bunge ex Boiss) an endemic psammophyte to Iran. International Journal of Science and Nature, 1(2): 198-201.
Stanwood, P. C., 1985. Cryopreservation of seed germplasm for genetic conservation. in: Kartha, K. K., (ed) Cryopreservation of Plant Cells and Tissues. Boca Raton, FL: CRC, 199-226.
Volk, G. M., Harris, J. L., Rotindo, K. E., 2006. Survival of mint shoot tips after exposure to cryoprotectant solution components. Cryobiology, 52: 305-308.
Walters, C., Wheeler, L. J., Stanwood, P. C., 2004. Longevity of cryogenically stored seeds. Cryobiology, 48: 229–244.
Wen, B., Cai, C., Wang, R., Tan, Y., Lan, Q., 2010. Critical moisture content windows differ for the cryopreservation of pomelo (Citrus grandis) seeds and embryonic axes. CryoLetters, 31: 29-39.
Wood, C. B., Pritchard, H. W., Lindegard, K., 2003. Seed cryopreservation and longevity of two Salix hybrids. CryoLetters, 24: 17-26.
Yabor, L., Aragón, C., Pérez , A., Engelmann, F., Martínez-Montero, M. E., Lorenzo, J. C., 2015. Impact of liquid nitrogen exposure on selected biochemical and structural parameters of hydrated Phaseolus vulgaris L. seeds. CryoLetters, 36(3): 149-157.
Zhang, J., Huang, B., Lu, X., Volk, G. M., Xin, X., Yin, G., He, J., Chen, X., 2015. Cryopreservation of in vitro-grown shoot tips of Chinese medicinal plant Atractylodes macrocephala Koidz. using a droplet-vitrification method. CryoLetters, 36(3): 195-204.