ارزیابی شکست DNA به عنوان بیومارکر پیش آگهی در بیماران مبتلا به کووید-19 بستری در بیمارستان ولایت دامغان با روش assay Comet
الموضوعات :الهه عبیری 1 , مهدی میرزایی 2 , مجید مقبلی 3 , امیر آتشی 4 , احدعلی هراتی 5
1 - گروه زیست شناسی، واحد دامغان، دانشگاه آزاد اسلامی دامغان
2 - دانشگاه علوم پزشکی شاهرود
3 - عضوهیئت علمیگروه زیست شناسی، واحد دامغان، دانشگاه آزاد اسلامی دامغان
4 - دانشکده علوم پزشکی،دانشگاه علوم پزشکی شاهرود
5 - دانشکده علوم دارویی، دانشگاه آزاد اسلامی دامغان
الکلمات المفتاحية: Comet assay, کووید-19, ICU, آسیب DNA,
ملخص المقالة :
زمینه و هدف: بیماری همه گیر کرونا ویروس-19 یک بحران بزرگ بهداشت جهانی با ویژگی های بالینی متنوع است، از عفونت بدون علامت تا سندرم دیسترس تنفسی حاد (ARDS) و اختلال عملکرد چند ارگان. به این دلیل، به نشانگرهای زیستی پیش بینی کننده شدت کووید-19 نیاز فوری وجود دارد تا بیماری در اوایل شروع قابل تشخیص باشد. هدف از انجام این مطالعه، تبیین میزان (DNA break) بهعنوان یک بیومارکر برای پیش آگهی بیماری در مبتلایان به کووید-19 می باشد.مواد و روش ها: در این مطالعه از آزمون (comet assay) جهت مقایسه آسـیب هـای ایجـاد شـده در DNA لنفوسیتهای تکهستهای در بیماران مبتلا به کووید-19 در 4 گروه کنترل، بستری در بخش عادی، بستری در بخشICU و غیر اینتوبه، بستری در بخش ICU و اینتوبه شده استفاده شد.یافتهها: نتایج حاصل از بررسی آسیب DNA در لنفوسیتها در 4 گروه نشان داد که کووید 19 منجر به آسیب سلولی می شود و به ویژه قرار گرفتن طولانی مدت اینتوبه شدن بیماران مبتلا به کووید-19 در بخشICU باعث آسیب DNA بیشتری می شود و باعث افـزایش بیشتر (tail) ها می شود.نتیجه گیری: مقایسه (tail) ها در 4 گروه نـشان مـی دهـد: در افراد بستری در بخش عادی آسیب سلولی کمتر بوده است که می تواند به دلیل فعال شدن سیستم های ترمیم آسیب DNA باشد. همچنین یک رابطه مستقیم بین اینتوبه شدن طولانی مدت در بخش ICU و آسیب DNA وجود داشت و نیز هیچ آسیب قابل توجهی به DNA در لنفوسیت ها در افراد گروه کنترل مشاهده نشد. در نتیجه میزان آسیب به DNA (DNA break) لنفوسیت ها با پروگنوز بیماری در مبتلایان به کووید-19 ارتباط معناداری دارد.
Reference
1.Ahmed, Shiek SSJ, et al. "Regulatory cross talk between SARS-CoV-2 receptor binding and replication machinery in the human host." Frontiers in Physiology (2020): 802.
.2Victor, Joshua, et al. "SARS-CoV-2 triggers DNA damage response in Vero E6 cells." Biochemical and biophysical research communications 579 (2021): 141-145.
.3Xu, Ling Hui, et al. "Coronavirus infection induces DNA replication stress partly through interaction of its nonstructural protein 13 with the p125 subunit of DNA polymerase δ." Journal of Biological Chemistry 286.45 (2011): 39546-39559.
.4Li, Na, et al. "Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration." Cellular and molecular life sciences 72.15 (2015): 2973-2988.
.5Lakshmi, AN Vijaya, et al. "Detection of influenza virus induced DNA damage by comet assay." Mutation Research/Genetic Toxicology and Environmental Mutagenesis 442.1 (1999): 53-58.
.6Yang, Jun, et al. "ATM, ATR and DNA-PK: initiators of the cellular genotoxic stress responses." Carcinogenesis 24.10 (2003): 1571-1580.
.7Tubbs, Anthony, and André Nussenzweig. "Endogenous DNA damage as a source of genomic instability in cancer." Cell 168.4 (2017): 644-656.
.8X. Guo, Y. Deng, Y. Lin, W. Cosme-Blanco, S. Chan, H. He, G. Yuan, E.J. Brown, S. Chang Dysfunctional telomeres activate an ATM-ATR-dependent DNA damage response to suppress tumorigenesis EMBO J., 26 (22) (2007), pp. 4709-4719
.9S.A. Kamranvar, M.G. Masucci The Epstein-Barr virus nuclear antigen-1 promotes telomere dysfunction via induction of oxidative stress Leukemia, 25 (6) (2011), pp. 1017-1025
.10 Garcia Jr, Gustavo, et al. "Antiviral drug screen identifies DNA-damage response inhibitor as potent blocker of SARS-CoV-2 replication." Cell reports 35.1 (2021): 108940.
.11Smogorzewska, Agata, et al. "Control of human telomere length by TRF1 and TRF2." Molecular and cellular biology 20.5 (2000): 1659-1668.
.12Kamranvar, S. A., and M. G. Masucci. "The Epstein–Barr virus nuclear antigen-1 promotes telomere dysfunction via induction of oxidative stress." Leukemia 25.6 (2011): 1017-1025.
.13Kong, Chiou Mee, Xiao Wen Lee, and Xueying Wang. "Telomere shortening in human diseases." The FEBS journal 280.14 (2013): 3180-3193.
.14S. Ivancsits, E. Diem, A. Pilger, H.W. Rüdiger, O. Jahn, Induction of DNA strand breaks by intermittent exposure to extremely-low-frequency electromagnetic fields in human diploid fibroblasts, Mutation Research/Genetic toxicology Environmental Mutagenesis, 519 (2002) 1-13.
.15Lin, Ping-Yuan, et al. "Avian reovirus S1133-induced DNA damage signaling and subsequent apoptosis in cultured cells and in chickens." Archives of virology 156.11 (2011): 1917-1929.
.16Benavente J, Martinez-Costas J (2007) Avian reovirus: structure and biology. Virus Res 123:105–119
.17Shmulevitz, Maya, et al. "Cell-cell fusion induced by the avian reovirus membrane fusion protein is regulated by protein degradation." Journal of virology 78.11 (2004): 5996-6004.
18.Ntouros, Panagiotis A., et al. "Effective DNA damage response after acute but not chronic immune challenge: SARS-CoV-2 vaccine versus Systemic Lupus Erythematosus." Clinical Immunology 229 (2021): 108765.
.19Doria, A., et al. "Autoinflammation and autoimmunity: bridging the divide." Autoimmunity reviews 12.1 (2012): 22-30.
.20Shen, Yu J., et al. "Genome-derived cytosolic DNA mediates type I interferon-dependent rejection of B cell lymphoma cells." Cell reports 11.3 (2015): 460-473.
21.Jha, Awadhesh N. "Ecotoxicological applications and significance of the comet assay." Mutagenesis 23.3 (2008): 207-221.
_||_
Reference
1.Ahmed, Shiek SSJ, et al. "Regulatory cross talk between SARS-CoV-2 receptor binding and replication machinery in the human host." Frontiers in Physiology (2020): 802.
.2Victor, Joshua, et al. "SARS-CoV-2 triggers DNA damage response in Vero E6 cells." Biochemical and biophysical research communications 579 (2021): 141-145.
.3Xu, Ling Hui, et al. "Coronavirus infection induces DNA replication stress partly through interaction of its nonstructural protein 13 with the p125 subunit of DNA polymerase δ." Journal of Biological Chemistry 286.45 (2011): 39546-39559.
.4Li, Na, et al. "Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration." Cellular and molecular life sciences 72.15 (2015): 2973-2988.
.5Lakshmi, AN Vijaya, et al. "Detection of influenza virus induced DNA damage by comet assay." Mutation Research/Genetic Toxicology and Environmental Mutagenesis 442.1 (1999): 53-58.
.6Yang, Jun, et al. "ATM, ATR and DNA-PK: initiators of the cellular genotoxic stress responses." Carcinogenesis 24.10 (2003): 1571-1580.
.7Tubbs, Anthony, and André Nussenzweig. "Endogenous DNA damage as a source of genomic instability in cancer." Cell 168.4 (2017): 644-656.
.8X. Guo, Y. Deng, Y. Lin, W. Cosme-Blanco, S. Chan, H. He, G. Yuan, E.J. Brown, S. Chang Dysfunctional telomeres activate an ATM-ATR-dependent DNA damage response to suppress tumorigenesis EMBO J., 26 (22) (2007), pp. 4709-4719
.9S.A. Kamranvar, M.G. Masucci The Epstein-Barr virus nuclear antigen-1 promotes telomere dysfunction via induction of oxidative stress Leukemia, 25 (6) (2011), pp. 1017-1025
.10 Garcia Jr, Gustavo, et al. "Antiviral drug screen identifies DNA-damage response inhibitor as potent blocker of SARS-CoV-2 replication." Cell reports 35.1 (2021): 108940.
.11Smogorzewska, Agata, et al. "Control of human telomere length by TRF1 and TRF2." Molecular and cellular biology 20.5 (2000): 1659-1668.
.12Kamranvar, S. A., and M. G. Masucci. "The Epstein–Barr virus nuclear antigen-1 promotes telomere dysfunction via induction of oxidative stress." Leukemia 25.6 (2011): 1017-1025.
.13Kong, Chiou Mee, Xiao Wen Lee, and Xueying Wang. "Telomere shortening in human diseases." The FEBS journal 280.14 (2013): 3180-3193.
.14S. Ivancsits, E. Diem, A. Pilger, H.W. Rüdiger, O. Jahn, Induction of DNA strand breaks by intermittent exposure to extremely-low-frequency electromagnetic fields in human diploid fibroblasts, Mutation Research/Genetic toxicology Environmental Mutagenesis, 519 (2002) 1-13.
.15Lin, Ping-Yuan, et al. "Avian reovirus S1133-induced DNA damage signaling and subsequent apoptosis in cultured cells and in chickens." Archives of virology 156.11 (2011): 1917-1929.
.16Benavente J, Martinez-Costas J (2007) Avian reovirus: structure and biology. Virus Res 123:105–119
.17Shmulevitz, Maya, et al. "Cell-cell fusion induced by the avian reovirus membrane fusion protein is regulated by protein degradation." Journal of virology 78.11 (2004): 5996-6004.
18.Ntouros, Panagiotis A., et al. "Effective DNA damage response after acute but not chronic immune challenge: SARS-CoV-2 vaccine versus Systemic Lupus Erythematosus." Clinical Immunology 229 (2021): 108765.
.19Doria, A., et al. "Autoinflammation and autoimmunity: bridging the divide." Autoimmunity reviews 12.1 (2012): 22-30.
.20Shen, Yu J., et al. "Genome-derived cytosolic DNA mediates type I interferon-dependent rejection of B cell lymphoma cells." Cell reports 11.3 (2015): 460-473.
21.Jha, Awadhesh N. "Ecotoxicological applications and significance of the comet assay." Mutagenesis 23.3 (2008): 207-221.