پتانسیل شکارگری دلوویبریو باکتریووروس علیه جدایه های پاتوژن بالینی دارای مقاومت دارویی بسیار گسترده
الموضوعات :سلمان عدولی 1 , رسول روغنیان 2 , گیتی امتیازی 3 , میلاد محکم 4 , یونس قاسمی 5
1 - دانشجوی دکترای تخصصی میکروبیولوژی، گروه زیست شناسی سلولی و مولکولی و میکروبیولوژی، دانشکده علوم و فناوری های زیستی، دانشگاه اصفهان، ایران.
2 - گروه زیست شناسی سلولی و مولکولی و میکروبیولوژی، دانشکده علوم و فناوری های زیستی، دانشگاه اصفهان، اصفهان، ایران.
3 - گروه زیست شناسی سلولی و مولکولی و میکروبیولوژی، دانشکده علوم و فناوری های زیستی، دانشگاه اصفهان، اصفهان، ایران.
4 - مرکز تحقیقات علوم داروئی، دانشگاه علوم پزشکی شیراز، شیراز، ایران.
5 - مرکز تحقیقات علوم داروئی، دانشگاه علوم پزشکی شیراز، شیراز، ایران.
الکلمات المفتاحية: شناسایی, فعالیت باکتری کشی, شکارگری, مقاومت ضدمیکروبی, دلوویبریو,
ملخص المقالة :
سابقه و هدف: باکتری های مشابه دلوویبریو(BALOs) گروهی از باکتری های شکارچی هستند که منظور تکثیرشان، سایر باکتری های گرم منفی را به عنوان طعمه مورد تهاجم قرار می دهند. ماهیت باکتری کشی دلوویبریوها(Bdellovibrios)آنها را به یکی از جایگزین های امیدوارکننده برای آنتی بیوتیک های رایج تبدیل کرده است. در این مطالعه، جداسازی و شناسایی مولکولی دلوویبریو باکتریووروس سویه SOIR-1 توصیف شد. الگوی مقاومت آنتی بیوتیکی برخی از جدایه های بالینی تعیین و پتانسیل شکارگری SOIR-1 علیه آنها ارزیابی گردید.مواد و روش ها: برای جداسازی، ارزیابی ریخت شناسی، و شناسایی مولکولی SOIR-1 به ترتیب از روش های آگار دولایه، میکروسکوپ الکترونی عبوری و واکنش زنجیره ای پلیمراز علیه جایگاه ژنتیکی اختصاصی دلوویبریوها (hit) استفاده شد. به دنبال تعیین الگوی مقاومت آنتی بیوتیکی جدایه های بالینی، فعالیت باکتری کشی SOIR-1 علیه آنها از طریق ارزیابی تشکیل پلاک و سنجش لیز در کشت های هم زمان مایع ارزیابی گردید.نتایج: SOIR-1 توسط بررسی میکروسکوپ الکترونی عبوری و واکنش زنجیره ای پلی مراز اختصاصی به عنوان یک سویه دلوویبریو باکتریووروس شناسایی شد. تمام جدایه های بالینی دارای ویژگی مقاومت بسیار گسترده در برابر دارو (XDR) بودند و پلاک های شاخص دلوویبریو بر روی گستره سلولی همه آنها تشکیل شد. در میان جدایه های بالینی، SOIR-1 بیشترین و کمترین راندمان شکارگری را به ترتیب علیه آسینتوباکتر بامانی (%33/84) و سودوموناس آئروجینوسا-369 (%16/55) دارا بود.نتیجه گیری: این مطالعه پتانسیل بالای SOIR-1 را برای لیز جدایه های بالینی XDR صرف نظراز وضعیت مقاومت دارویی آنها آشکار ساخت. بنابراین، دلوویبریو باکتریووروس در موارد عفونت های ناشی از باکتری های مقاوم در برابر چندین دارو می تواند به عنوان یک آنتی بیوتیک زنده محسوب گردد.
2010;74(3):417-33.
2. Laws M, Shaaban A, Rahman KM. Antibiotic resistance breakers: current approaches and
future directions. FEMS Microbiol Rev. 2019;43(5):490-516.
3. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic
resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645.
4. Nikaido H. Multidrug resistance in bacteria. Annu Rev Biochem. 2009;78:119-46.
5. Abat C, Fournier P-E, Jimeno M-T, Rolain J-M, Raoult D. Extremely and pandrug-resistant
bacteria extra-deaths: myth or reality? Eur J Clin Microbiol Infect Dis. 2018;37(9):1687-97.
6. Magiorakos AP, Srinivasan A, Carey R, Carmeli Y, Falagas M, Giske C, et al.
Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international
expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect.
2012;18(3):268-81.
7. Bassetti M, Peghin M, Vena A, Giacobbe DR. Treatment of infections due to MDR
Gram-negative bacteria. Front Med. 2019;6.
8. Vivas R, Barbosa AAT, Dolabela SS, Jain S. Multidrug-resistant bacteria and alternative
methods to control them: An overview. Microb Drug Resist. 2019;25(6):890-908.
9. Rios AC, Moutinho CG, Pinto FC, Del Fiol FS, Jozala A, Chaud MV, et al. Alternatives to
overcoming bacterial resistances: state-of-the-art. Microbiol Res. 2016;191:51-80.
10. Parisien A, Allain B, Zhang J, Mandeville R, Lan C. Novel alternatives to antibiotics:
bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J Appl Microbiol.
2008;104(1):1-13.
11. Wu H, Lu H, Huang J, Li G, Huang Q. EnzyBase: a novel database for enzybiotic studies.
BMC Microbiol. 2012;12(1):54.
12. Kadouri DE, To K, Shanks RM, Doi Y. Predatory bacteria: a potential ally against
multidrug-resistant Gram-negative pathogens. PloS one. 2013;8(5):e63397.
13. Martin MO. Predatory prokaryotes: an emerging research opportunity. J Mol Microbiol
Biotechnol. 2002;4(5):467-78.
14. Markelova NY. Predacious bacteria, Bdellovibrio with potential for biocontrol. Int J Hyg
Environ Health. 2010;213(6):428-31.
15. Dwidar M, Monnappa AK, Mitchell RJ. The dual probiotic and antibiotic nature of
Bdellovibrio bacteriovorus. BMB Rep. 2012;45(2):71-8.
16. Davidov Y, Jurkevitch E. Diversity and evolution of Bdellovibrio-and-like organisms
(BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov.,
and description of the Bacteriovorax–Peredibacter clade as Bacteriovoracaceae fam. nov. Int J
Syst Evol Microbiol. 2004;54(5):1439-52.
17. Strauch E, Schwudke D, Linscheid M. Predatory mechanisms of Bdellovibrio and like
organisms. Future Microbiol. 2007;2(2):63-73.
18. Sockett RE, Lambert C. Bdellovibrio as therapeutic agents: a predatory renaissance? Nat Rev
Microbiol. 2004;2(8):669.
19. Stolp H, Starr M. Bdellovibrio bacteriovorus gen. et sp. n., a predatory, ectoparasitic, and
bacteriolytic microorganism. Antonie Van Leeuwenhoek. 1963;29(1):217-48.
20. Pan A, Chanda I, Chakrabarti J. Analysis of the genome and proteome composition of
Bdellovibrio bacteriovorus: indication for recent prey-derived horizontal gene transfer.
Genomics. 2011;98(3):213-22.
21. Rendulic S, Jagtap P, Rosinus A, Eppinger M, Baar C, Lanz C, et al. A predator unmasked:
life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science. 2004;303
(5658):689-92.
22. Lambert C, Morehouse KA, Chang C-Y, Sockett RE. Bdellovibrio: growth and development
during the predatory cycle. Curr Opin Microbiol. 2006;9(6):639-44.
23. Sockett RE. Predatory lifestyle of Bdellovibrio bacteriovorus. Annu Rev Microbiol.
2009;63:523-39.
24. Van Essche M, Quirynen M, Sliepen I, Loozen G, Boon N, Van Eldere J, et al. Killing of
anaerobic pathogens by predatory bacteria. Mol Oral Microbiol. 2011;26(1):52-61.
25. Shanks RM, Kadouri DE. Predatory prokaryotes wage war against eye infections. Future
Microbiol. 2014;9(4):429-32.
26. Monnappa AK, Dwidar M, Seo JK, Hur J-H, Mitchell RJ. Bdellovibrio bacteriovorus inhibits
Staphylococcus aureus biofilm formation and invasion into human epithelial cells. Sci Rep.
2014;4:3811.
27. Kadouri D, O'Toole GA. Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl
Environ Microbiol. 2005;71(7):4044-51.
28. Dashiff A, Junka R, Libera M, Kadouri D. Predation of human pathogens by the predatory
bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J Appl Microbiol.
2011;110(2):431-44.
29. Chu WH, Zhu W. Isolation of Bdellovibrio as biological therapeutic agents used for the
treatment of Aeromonas hydrophila infection in fish. Zoonoses Public Health. 2010;57(4):
258-64.
30. Dharani S, Kim DH, Shanks RM, Doi Y, Kadouri DE. Susceptibility of colistin-resistant
pathogens to predatory bacteria. Research in microbiology. 2018;169(1):52-5.
31. Markelova NO. The Potential of Bdellovibrio For the Biocontrol of the Infectious Agent
Vibrio cholerae. 2015.
32. Dashiff A, Kadouri D. Predation of oral pathogens by Bdellovibrio bacteriovorus 109J. Mol
Oral Microbiol. 2011;26(1):19-34.
33. Rajababu P, Vikram RG, Jagadish RG, Rathi E. Periodontal predators preying the pathogens.
Indian J Dent Res. 2013;5(2):1182-6.
34. Loozen G, Boon N, Pauwels M, Slomka V, Herrero ER, Quirynen M, et al. Effect of
Bdellovibrio bacteriovorus HD100 on multispecies oral communities. Anaerobe. 2015;35:
45-53.
35. Cao H, He S, Wang H, Hou S, Lu L, Yang X. Bdellovibrios, potential biocontrol bacteria
against pathogenic Aeromonas hydrophila. Vet Microbiol. 2012;154(3-4):413-8.
36. Shanks RM, Davra VR, Romanowski EG, Brothers KM, Stella NA, Godboley D, et al. An eye
to a kill: using predatory bacteria to control Gram-negative pathogens associated with ocular
infections. PloS one. 2013;8(6):e66723.
37. Hope D, Ampaire L, Oyet C, Muwanguzi E, Twizerimana H, Apecu RO. Antimicrobial
resistance in pathogenic aerobic bacteria causing surgical site infections in Mbarara regional
referral hospital, Southwestern Uganda. Sci Rep. 2019;9(1):1-10.
38. CLSI. Performance standards for antimicrobial susceptibility testing. 30th ed. CLSI
supplement M100. Wayne, PA: Clinical and laboratory standards institute; 2020.
39. Jurkevitch E. Isolation and classification of Bdellovibrio and like organisms. Curr Protoc
Microbiol. 2012;26(1):7B. 1.-7B. 1.20.
40. Iebba V, Santangelo F, Totino V, Nicoletti M, Gagliardi A, De Biase RV, et al. Higher
prevalence and abundance of Bdellovibrio bacteriovorus in the human gut of healthy subjects.
PloS one. 2013;8(4):e61608.
41. Schwudke D, Strauch E, Krueger M, Appel B. Taxonomic studies of predatory bdellovibrios
based on 16S rRNA analysis, ribotyping and the hit locus and characterization of isolates from
the gut of animals. Syst Appl Microbiol. 2001;24(3):385-94.
42. Rogosky AM, Moak PL, Emmert EA. Differential predation by Bdellovibrio bacteriovorus
109J. Curr Microbiol. 2006;52(2):81-5.
43. Li H, Liu C, Chen L, Zhang X, Cai J. Biological characterization of two marine
Bdellovibrio-and-like organisms isolated from Daya bay of Shenzhen, China and their
application in the elimination of Vibrio parahaemolyticus in oyster. Int J Food Microbiol.
2011;151(1):36-43.
44. Varon M, Shilo M. Attachment of Bdellovibrio bacteriovorus to cell wall mutants of
Salmonella spp. and Escherichia coli
Journal of bacteriology. 1969;97(2):977.
45. Strauch E, Beck S, Appel B. Bdellovibrio and like organisms: potential sources for new
biochemicals and therapeutic agents? Predatory Prokaryotes: Springer; 2006. p. 131-52.
46. Koval S, Hynes S. Effect of paracrystalline protein surface layers on predation by Bdellovibrio
bacteriovorus. Journal of bacteriology. 1991;173(7):2244-9.
47. Koval SF, Bayer ME. Bacterial capsules: no barrier against Bdellovibrio. Microbiology.
1997;143(3):749-53.
48. Lambert C, Hobley L, Chang C-Y, Fenton A, Capeness M, Sockett L. A predatory patchwork:
membrane and surface structures of Bdellovibrio bacteriovorus. Adv Microb Physiol.
2008;54:313-61.
49. Duncan MC, Forbes JC, Nguyen Y, Shull LM, Gillette RK, Lazinski DW, et al. Vibrio
cholerae motility exerts drag force to impede attack by the bacterial predator Bdellovibrio
bacteriovorus. Nat Commun. 2018;9(1):4757.
50. Sun Y, Ye J, Hou Y, Chen H, Cao J, Zhou T. Predation efficacy of Bdellovibrio bacteriovorus
on multidrug-resistant clinical pathogens and their corresponding biofilms. Jpn J Infect Dis.
2017;70(5):485-9.
51. Gupta S, Tang C, Tran M, Kadouri DE. Effect of predatory bacteria on human cell lines. PloS
one. 2016;11(8):e0161242.
52. Schwudke D, Linscheid M, Strauch E, Appel B, Zahringer U, Moll H, et al. The obligate
predatory Bdellovibrio bacteriovorus possesses a neutral lipid A containing alpha-D-Mannoses
that replace phosphate residues: similarities and differences between the lipid As and the
lipopolysaccharides of the wild type strain B. bacteriovorus HD100 and its host-independent
derivative HI100. J Biol Chem. 2003;278(30):27502.
53. Atterbury RJ, Hobley L, Till R, Lambert C, Capeness MJ, Lerner TR, et al. Effects of orally
administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of
young chicks. Appl Environ Microbiol. 2011;77(16):5794-803.
54. Shatzkes K, Chae R, Tang C, Ramirez GC, Mukherjee S, Tsenova L, et al. Examining the
safety of respiratory and intravenous inoculation of Bdellovibrio bacteriovorus and Micavibrio
aeruginosavorus in a mouse model. Sci Rep. 2015;5:12899.
55. Shatzkes K, Singleton E, Tang C, Zuena M, Shukla S, Gupta S, et al. Predatory bacteria
attenuate Klebsiella pneumoniae burden in rat lungs. MBio. 2016;7(6):e01847-16.
56. Shemesh Y, Jurkevitch E. Plastic phenotypic resistance to predation by Bdellovibrio and like
organisms in bacterial prey. Environ Microbiol. 2004;6(1):12-8
_||_
2010;74(3):417-33.
2. Laws M, Shaaban A, Rahman KM. Antibiotic resistance breakers: current approaches and
future directions. FEMS Microbiol Rev. 2019;43(5):490-516.
3. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic
resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645.
4. Nikaido H. Multidrug resistance in bacteria. Annu Rev Biochem. 2009;78:119-46.
5. Abat C, Fournier P-E, Jimeno M-T, Rolain J-M, Raoult D. Extremely and pandrug-resistant
bacteria extra-deaths: myth or reality? Eur J Clin Microbiol Infect Dis. 2018;37(9):1687-97.
6. Magiorakos AP, Srinivasan A, Carey R, Carmeli Y, Falagas M, Giske C, et al.
Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international
expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect.
2012;18(3):268-81.
7. Bassetti M, Peghin M, Vena A, Giacobbe DR. Treatment of infections due to MDR
Gram-negative bacteria. Front Med. 2019;6.
8. Vivas R, Barbosa AAT, Dolabela SS, Jain S. Multidrug-resistant bacteria and alternative
methods to control them: An overview. Microb Drug Resist. 2019;25(6):890-908.
9. Rios AC, Moutinho CG, Pinto FC, Del Fiol FS, Jozala A, Chaud MV, et al. Alternatives to
overcoming bacterial resistances: state-of-the-art. Microbiol Res. 2016;191:51-80.
10. Parisien A, Allain B, Zhang J, Mandeville R, Lan C. Novel alternatives to antibiotics:
bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J Appl Microbiol.
2008;104(1):1-13.
11. Wu H, Lu H, Huang J, Li G, Huang Q. EnzyBase: a novel database for enzybiotic studies.
BMC Microbiol. 2012;12(1):54.
12. Kadouri DE, To K, Shanks RM, Doi Y. Predatory bacteria: a potential ally against
multidrug-resistant Gram-negative pathogens. PloS one. 2013;8(5):e63397.
13. Martin MO. Predatory prokaryotes: an emerging research opportunity. J Mol Microbiol
Biotechnol. 2002;4(5):467-78.
14. Markelova NY. Predacious bacteria, Bdellovibrio with potential for biocontrol. Int J Hyg
Environ Health. 2010;213(6):428-31.
15. Dwidar M, Monnappa AK, Mitchell RJ. The dual probiotic and antibiotic nature of
Bdellovibrio bacteriovorus. BMB Rep. 2012;45(2):71-8.
16. Davidov Y, Jurkevitch E. Diversity and evolution of Bdellovibrio-and-like organisms
(BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov.,
and description of the Bacteriovorax–Peredibacter clade as Bacteriovoracaceae fam. nov. Int J
Syst Evol Microbiol. 2004;54(5):1439-52.
17. Strauch E, Schwudke D, Linscheid M. Predatory mechanisms of Bdellovibrio and like
organisms. Future Microbiol. 2007;2(2):63-73.
18. Sockett RE, Lambert C. Bdellovibrio as therapeutic agents: a predatory renaissance? Nat Rev
Microbiol. 2004;2(8):669.
19. Stolp H, Starr M. Bdellovibrio bacteriovorus gen. et sp. n., a predatory, ectoparasitic, and
bacteriolytic microorganism. Antonie Van Leeuwenhoek. 1963;29(1):217-48.
20. Pan A, Chanda I, Chakrabarti J. Analysis of the genome and proteome composition of
Bdellovibrio bacteriovorus: indication for recent prey-derived horizontal gene transfer.
Genomics. 2011;98(3):213-22.
21. Rendulic S, Jagtap P, Rosinus A, Eppinger M, Baar C, Lanz C, et al. A predator unmasked:
life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science. 2004;303
(5658):689-92.
22. Lambert C, Morehouse KA, Chang C-Y, Sockett RE. Bdellovibrio: growth and development
during the predatory cycle. Curr Opin Microbiol. 2006;9(6):639-44.
23. Sockett RE. Predatory lifestyle of Bdellovibrio bacteriovorus. Annu Rev Microbiol.
2009;63:523-39.
24. Van Essche M, Quirynen M, Sliepen I, Loozen G, Boon N, Van Eldere J, et al. Killing of
anaerobic pathogens by predatory bacteria. Mol Oral Microbiol. 2011;26(1):52-61.
25. Shanks RM, Kadouri DE. Predatory prokaryotes wage war against eye infections. Future
Microbiol. 2014;9(4):429-32.
26. Monnappa AK, Dwidar M, Seo JK, Hur J-H, Mitchell RJ. Bdellovibrio bacteriovorus inhibits
Staphylococcus aureus biofilm formation and invasion into human epithelial cells. Sci Rep.
2014;4:3811.
27. Kadouri D, O'Toole GA. Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl
Environ Microbiol. 2005;71(7):4044-51.
28. Dashiff A, Junka R, Libera M, Kadouri D. Predation of human pathogens by the predatory
bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J Appl Microbiol.
2011;110(2):431-44.
29. Chu WH, Zhu W. Isolation of Bdellovibrio as biological therapeutic agents used for the
treatment of Aeromonas hydrophila infection in fish. Zoonoses Public Health. 2010;57(4):
258-64.
30. Dharani S, Kim DH, Shanks RM, Doi Y, Kadouri DE. Susceptibility of colistin-resistant
pathogens to predatory bacteria. Research in microbiology. 2018;169(1):52-5.
31. Markelova NO. The Potential of Bdellovibrio For the Biocontrol of the Infectious Agent
Vibrio cholerae. 2015.
32. Dashiff A, Kadouri D. Predation of oral pathogens by Bdellovibrio bacteriovorus 109J. Mol
Oral Microbiol. 2011;26(1):19-34.
33. Rajababu P, Vikram RG, Jagadish RG, Rathi E. Periodontal predators preying the pathogens.
Indian J Dent Res. 2013;5(2):1182-6.
34. Loozen G, Boon N, Pauwels M, Slomka V, Herrero ER, Quirynen M, et al. Effect of
Bdellovibrio bacteriovorus HD100 on multispecies oral communities. Anaerobe. 2015;35:
45-53.
35. Cao H, He S, Wang H, Hou S, Lu L, Yang X. Bdellovibrios, potential biocontrol bacteria
against pathogenic Aeromonas hydrophila. Vet Microbiol. 2012;154(3-4):413-8.
36. Shanks RM, Davra VR, Romanowski EG, Brothers KM, Stella NA, Godboley D, et al. An eye
to a kill: using predatory bacteria to control Gram-negative pathogens associated with ocular
infections. PloS one. 2013;8(6):e66723.
37. Hope D, Ampaire L, Oyet C, Muwanguzi E, Twizerimana H, Apecu RO. Antimicrobial
resistance in pathogenic aerobic bacteria causing surgical site infections in Mbarara regional
referral hospital, Southwestern Uganda. Sci Rep. 2019;9(1):1-10.
38. CLSI. Performance standards for antimicrobial susceptibility testing. 30th ed. CLSI
supplement M100. Wayne, PA: Clinical and laboratory standards institute; 2020.
39. Jurkevitch E. Isolation and classification of Bdellovibrio and like organisms. Curr Protoc
Microbiol. 2012;26(1):7B. 1.-7B. 1.20.
40. Iebba V, Santangelo F, Totino V, Nicoletti M, Gagliardi A, De Biase RV, et al. Higher
prevalence and abundance of Bdellovibrio bacteriovorus in the human gut of healthy subjects.
PloS one. 2013;8(4):e61608.
41. Schwudke D, Strauch E, Krueger M, Appel B. Taxonomic studies of predatory bdellovibrios
based on 16S rRNA analysis, ribotyping and the hit locus and characterization of isolates from
the gut of animals. Syst Appl Microbiol. 2001;24(3):385-94.
42. Rogosky AM, Moak PL, Emmert EA. Differential predation by Bdellovibrio bacteriovorus
109J. Curr Microbiol. 2006;52(2):81-5.
43. Li H, Liu C, Chen L, Zhang X, Cai J. Biological characterization of two marine
Bdellovibrio-and-like organisms isolated from Daya bay of Shenzhen, China and their
application in the elimination of Vibrio parahaemolyticus in oyster. Int J Food Microbiol.
2011;151(1):36-43.
44. Varon M, Shilo M. Attachment of Bdellovibrio bacteriovorus to cell wall mutants of
Salmonella spp. and Escherichia coli
Journal of bacteriology. 1969;97(2):977.
45. Strauch E, Beck S, Appel B. Bdellovibrio and like organisms: potential sources for new
biochemicals and therapeutic agents? Predatory Prokaryotes: Springer; 2006. p. 131-52.
46. Koval S, Hynes S. Effect of paracrystalline protein surface layers on predation by Bdellovibrio
bacteriovorus. Journal of bacteriology. 1991;173(7):2244-9.
47. Koval SF, Bayer ME. Bacterial capsules: no barrier against Bdellovibrio. Microbiology.
1997;143(3):749-53.
48. Lambert C, Hobley L, Chang C-Y, Fenton A, Capeness M, Sockett L. A predatory patchwork:
membrane and surface structures of Bdellovibrio bacteriovorus. Adv Microb Physiol.
2008;54:313-61.
49. Duncan MC, Forbes JC, Nguyen Y, Shull LM, Gillette RK, Lazinski DW, et al. Vibrio
cholerae motility exerts drag force to impede attack by the bacterial predator Bdellovibrio
bacteriovorus. Nat Commun. 2018;9(1):4757.
50. Sun Y, Ye J, Hou Y, Chen H, Cao J, Zhou T. Predation efficacy of Bdellovibrio bacteriovorus
on multidrug-resistant clinical pathogens and their corresponding biofilms. Jpn J Infect Dis.
2017;70(5):485-9.
51. Gupta S, Tang C, Tran M, Kadouri DE. Effect of predatory bacteria on human cell lines. PloS
one. 2016;11(8):e0161242.
52. Schwudke D, Linscheid M, Strauch E, Appel B, Zahringer U, Moll H, et al. The obligate
predatory Bdellovibrio bacteriovorus possesses a neutral lipid A containing alpha-D-Mannoses
that replace phosphate residues: similarities and differences between the lipid As and the
lipopolysaccharides of the wild type strain B. bacteriovorus HD100 and its host-independent
derivative HI100. J Biol Chem. 2003;278(30):27502.
53. Atterbury RJ, Hobley L, Till R, Lambert C, Capeness MJ, Lerner TR, et al. Effects of orally
administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of
young chicks. Appl Environ Microbiol. 2011;77(16):5794-803.
54. Shatzkes K, Chae R, Tang C, Ramirez GC, Mukherjee S, Tsenova L, et al. Examining the
safety of respiratory and intravenous inoculation of Bdellovibrio bacteriovorus and Micavibrio
aeruginosavorus in a mouse model. Sci Rep. 2015;5:12899.
55. Shatzkes K, Singleton E, Tang C, Zuena M, Shukla S, Gupta S, et al. Predatory bacteria
attenuate Klebsiella pneumoniae burden in rat lungs. MBio. 2016;7(6):e01847-16.
56. Shemesh Y, Jurkevitch E. Plastic phenotypic resistance to predation by Bdellovibrio and like
organisms in bacterial prey. Environ Microbiol. 2004;6(1):12-8