تجزیه زیستی نفت خام و ترکیبات پلی آروماتیک چند حلقه ای توسط مخمر اگزوفیالا 5043 UTMC
الموضوعات :فرحناز اکبرزاده 1 , حمید مقیمی 2 , شمس الضحی ابولمعالی 3 , جواد حامدی 4
1 - دانشجوی کارشناسی ارشد زیست فناوری میکروبی، گروه زیست فناوری، پردیس علوم و فناوری های نوین، دانشگاه سمنان، سمنان، ایران
2 - استادیار، بخش زیست فناوری میکروبی، دانشکده زیست شناسی، پردیس علوم، دانشگاه تهران، تهران
3 - استادیار، دانشکده علوم پایه، گروه زیست شناسی، دانشگاه سمنان، سمنان، ایران
4 - استاد، بخش زیست فناوری میکروبی، دانشکده زیست شناسی، پردیس علوم، دانشگاه تهران، تهران
الکلمات المفتاحية: زیست پالایی, پیرن, فنانترن, آنتراسن, اگزوفیالا,
ملخص المقالة :
سابقه و هدف: فرآورده های نفتی از پر مصرف ترین مواد شیمیایی در دنیای امروز محسوب می شوند. روزانه مقادیر زیادی از نفت خام و فرآورده های نفتی در حجم زیاد به محیط زیست وارد می شود. هدف از این پژوهش جداسازی و ارزیابی مخمرهای بومی ایران به منظور زیست پالایی مناطق آلوده نفتی بود.مواد و روش ها: نمونه خاک از مناطق مختلف آلوده به آلاینده های نفتی در ایران جمع آوری گردید. سپس در محیط باشنل هاس همراه با 0.5 درصد نفت خام و تتراسایکلین (100 میلی گرم در لیتر) به مدت 14 روز کشت داده شدند. میزان تخریب نفت خام با استفاده از خواندن جذب کل هیدروکربن های نفتی سنجیده شد. با استفاده از روش HPLC حذف ppm 100 فنانترن، آنتراسن و پیرن به عنوان ترکیبات پلی آروماتیک چندحلقه ای مدل مورد بررسی قرار گرفت. جدایه منتخب از طریق تکثیر ژن ITS، تعیین توالی و همردیفی توالی در پایگاه داده شناسایی گردید.یافته ها: در این مطالعه 47 گونه مخمر جداسازی گردید. سنجش میزان حذف TPH نشان داد که جدایه FA14 با 89 درصد حذف نفت، طی 14 روز توانمندترین جدایه در حذف هیدروکربن های نفتی می باشد. شناسایی مولکولی این جدایه با کمک توالی یابی ژن ITS و همردیف یابی آن در پایگاه داده های NCBI نشان داد که جدایه FA14 با 99 درصد شباهت، متعلق به جنس اگزوفیالا می باشد. نتایج نشان داد که فنانترن، آنتراسن و پیرن به ترتیب 97.67، 57 و 95.38 درصد به وسیله FA14 و طی 14 روز از محیط حذف گردیدند.نتیجه گیری: نتایج این پژوهش نشان داد که اگزوفیالا در حذف هیدروکربن های آروماتیک چند حلقه ای توانایی بالایی دارد. بنابراین می تواند به عنوان کاندید مناسب به منظور زیست پالایی محیط آلوده به نفت خام معرفی گردد.
Biotecnol. 2014; 27:191-194.
2. Mohanty S, Jasmine J, Mukherji S. Practical considerations and challenges involved in
surfactant enhanced bioremediation of oil. BioMed Res Int. 2013; doi:10.115/2013/328608.
3. Varjani SJ. Microbial degradation of petroleum hydrocarbons. Bioresour Technol. 2017; 223:
277-286.
4. Singh H. Mycoremediation: fungal bioremediation. John Wiley & Sons, Inc., Hoboken, New
Jersey, USA; 2006.
5. Mohsenzadeh F, Chehregani Rad A, Akbari M. Evaluation of oil removal efficiency and
enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils. Iran J
Environ Health Sci Eng. 2012; 9(1): 26-35.
6. Singh A, Ward OP. Biodegradation and bioremediation. Springer-Verlag, Berlin, Heidelbberg;
2004.
7. Das N, Chandran P. Microbial degradation of petroleum hydrocarbon contaminants: an
overview. Biotechnol Res Int. 2011; doi:10.4061/2011/941810.
8. Gargouri B, Mhiri N, Karray F, Aloui F, Sayadi S. Isolation and characterization of
hydrocarbon-degrading yeast strains from petroleum contaminated industrial wastewater.
Biomed Res Int. 2015; doi: 10.1155/2015/929424.
9. Kurtzman CP, Fell JW, Boekhout T. The yeasts: a taxonomic study. 5th Ed. Elsevier Science,
Amesterdam; 2011.
10. Eriksson M, Dalhammar G, Borg-Karlson AK. Biological degradation of selected
hydrocarbons in an old PAH/creosote contaminated soil from a gas work site. Appl Micro
Biotechnol. 2000; 53(5): 619-626.
11. Pasumarthi R, Chandrasekaran S, Mutnuri S. Biodegradation of crude oil by Pseudomonas
aeruginosa and Escherichia fergusonii isolated from the Goan coast. Mar Pollut Bull. 2013; 76
(1): 276-282.
12. Rinaldi MG. Use of potato flakes agar in clinical mycology. J Clinical Microb. 1982; 15(6):
1159-1160.
13. Rahman K, Thahira-Rahman J, Lakshmanaperumalsamy P, Banat IM. Towards efficient crude
oil degradation by a mixed bacterial consortium. Bioresour Technol. 2002; 85(3): 257-261.
14. Dritsa V, Rigas F, Natsis K, Marchant R. Characterization of a fungal strain isolated from a
polyphenol polluted site. Bioresour Technol. 2007; 98(9): 1741-1747.
15. Behnood M, Nasernejad B, Nikazar M. Biodegradation of crude oil from saline waste water
using white rot fungus Phanerochaete chrysosporium. J Ind Eng Chem. 2014; 20(4): 1879-1885.
16. Romero MC, Salvioli ML, Cazau MC, Arambarri AM. Pyrene degradation by yeasts and
filamentous fungi. Env Pollution. 2002; 117(1): 159-163.
17. Kamyabi A, Nouri H, Moghimi H. Synergistic effect of Sarocladium sp. and Cryptococcus sp.
co-culture on crude oil biodegradation and biosurfactant production. Appl Biochem Biotechnol.
2017; 182(1): 324-334.
18. Srujana K, Khan AB. Isolation and characterization of polycyclic aromatic hydrocarbon
degrading soil microbes from automobile workshop sediments. J Env Sci Technol. 2012; 5(1):
74-83.
19. Moghimi H, Tabar RH, Hamedi J. Assessing the biodegradation of polycyclic aromatic
hydrocarbons and laccase production by new fungus Trematophoma sp. UTMC 5003. World J
Microbiol Biotechnol. 2017; 33(7): 136.
20. Bento FM, Camargo FA, Okeke BC, Frankenberger WT. Comparative bioremediation of soils
contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation.
Bioresour Technol. 2005; 96(9): 1055-1049.
21. Atagana HI, Haynes R, Wallis F. Fungal bioremediation of creosote-contaminated soil: a
laboratory scale bioremediation study using indigenous soil fungi. Water, air, soil Pollut. 2006;
172(1): 201-219.
22. Middelhoven WJ, Scorzetti G, Fell JW. Trichosporon veenhuisii sp. nov., an
alkane-assimilating anamorphic basidiomycetous yeast. Int J Syst Evol Microb. 2000; 50(1):
381-387.
23. Assadirad MHA, Assadi MM, Rashedi H, Nejadsattari T. Isolation and phylogenetic analysis
of indigenous oil-degrading bacteria from soil of Karoon area in Ahvaz. J Microb World. 2016;
9(3): 236-246. [In Persian]
24. Aranda, E. Promising approaches towards biotransformation of polycyclic aromatic
hydrocarbons with Ascomycota fungi. Curr Opin Biotechnol. 2016; 38: 1-8.
25. Zhang JH, Xue QH, Gao H, Ma X, Wang P. Degradation of crude oil by fungal enzyme
preparations from Aspergillus spp. for potential use in enhanced oil recovery. J Chem Technol
Biotechnol. 2016; 91(4): 865-875.
26. Simister RL, Poutasse CM, Thurston AM, Reeve JL, Baker MC, White HK. Degradation of oil
by fungi isolated from Gulf of Mexico beaches. Mar Pollut Bull. 2015; 100(1): 327-333.
_||_
Biotecnol. 2014; 27:191-194.
2. Mohanty S, Jasmine J, Mukherji S. Practical considerations and challenges involved in
surfactant enhanced bioremediation of oil. BioMed Res Int. 2013; doi:10.115/2013/328608.
3. Varjani SJ. Microbial degradation of petroleum hydrocarbons. Bioresour Technol. 2017; 223:
277-286.
4. Singh H. Mycoremediation: fungal bioremediation. John Wiley & Sons, Inc., Hoboken, New
Jersey, USA; 2006.
5. Mohsenzadeh F, Chehregani Rad A, Akbari M. Evaluation of oil removal efficiency and
enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils. Iran J
Environ Health Sci Eng. 2012; 9(1): 26-35.
6. Singh A, Ward OP. Biodegradation and bioremediation. Springer-Verlag, Berlin, Heidelbberg;
2004.
7. Das N, Chandran P. Microbial degradation of petroleum hydrocarbon contaminants: an
overview. Biotechnol Res Int. 2011; doi:10.4061/2011/941810.
8. Gargouri B, Mhiri N, Karray F, Aloui F, Sayadi S. Isolation and characterization of
hydrocarbon-degrading yeast strains from petroleum contaminated industrial wastewater.
Biomed Res Int. 2015; doi: 10.1155/2015/929424.
9. Kurtzman CP, Fell JW, Boekhout T. The yeasts: a taxonomic study. 5th Ed. Elsevier Science,
Amesterdam; 2011.
10. Eriksson M, Dalhammar G, Borg-Karlson AK. Biological degradation of selected
hydrocarbons in an old PAH/creosote contaminated soil from a gas work site. Appl Micro
Biotechnol. 2000; 53(5): 619-626.
11. Pasumarthi R, Chandrasekaran S, Mutnuri S. Biodegradation of crude oil by Pseudomonas
aeruginosa and Escherichia fergusonii isolated from the Goan coast. Mar Pollut Bull. 2013; 76
(1): 276-282.
12. Rinaldi MG. Use of potato flakes agar in clinical mycology. J Clinical Microb. 1982; 15(6):
1159-1160.
13. Rahman K, Thahira-Rahman J, Lakshmanaperumalsamy P, Banat IM. Towards efficient crude
oil degradation by a mixed bacterial consortium. Bioresour Technol. 2002; 85(3): 257-261.
14. Dritsa V, Rigas F, Natsis K, Marchant R. Characterization of a fungal strain isolated from a
polyphenol polluted site. Bioresour Technol. 2007; 98(9): 1741-1747.
15. Behnood M, Nasernejad B, Nikazar M. Biodegradation of crude oil from saline waste water
using white rot fungus Phanerochaete chrysosporium. J Ind Eng Chem. 2014; 20(4): 1879-1885.
16. Romero MC, Salvioli ML, Cazau MC, Arambarri AM. Pyrene degradation by yeasts and
filamentous fungi. Env Pollution. 2002; 117(1): 159-163.
17. Kamyabi A, Nouri H, Moghimi H. Synergistic effect of Sarocladium sp. and Cryptococcus sp.
co-culture on crude oil biodegradation and biosurfactant production. Appl Biochem Biotechnol.
2017; 182(1): 324-334.
18. Srujana K, Khan AB. Isolation and characterization of polycyclic aromatic hydrocarbon
degrading soil microbes from automobile workshop sediments. J Env Sci Technol. 2012; 5(1):
74-83.
19. Moghimi H, Tabar RH, Hamedi J. Assessing the biodegradation of polycyclic aromatic
hydrocarbons and laccase production by new fungus Trematophoma sp. UTMC 5003. World J
Microbiol Biotechnol. 2017; 33(7): 136.
20. Bento FM, Camargo FA, Okeke BC, Frankenberger WT. Comparative bioremediation of soils
contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation.
Bioresour Technol. 2005; 96(9): 1055-1049.
21. Atagana HI, Haynes R, Wallis F. Fungal bioremediation of creosote-contaminated soil: a
laboratory scale bioremediation study using indigenous soil fungi. Water, air, soil Pollut. 2006;
172(1): 201-219.
22. Middelhoven WJ, Scorzetti G, Fell JW. Trichosporon veenhuisii sp. nov., an
alkane-assimilating anamorphic basidiomycetous yeast. Int J Syst Evol Microb. 2000; 50(1):
381-387.
23. Assadirad MHA, Assadi MM, Rashedi H, Nejadsattari T. Isolation and phylogenetic analysis
of indigenous oil-degrading bacteria from soil of Karoon area in Ahvaz. J Microb World. 2016;
9(3): 236-246. [In Persian]
24. Aranda, E. Promising approaches towards biotransformation of polycyclic aromatic
hydrocarbons with Ascomycota fungi. Curr Opin Biotechnol. 2016; 38: 1-8.
25. Zhang JH, Xue QH, Gao H, Ma X, Wang P. Degradation of crude oil by fungal enzyme
preparations from Aspergillus spp. for potential use in enhanced oil recovery. J Chem Technol
Biotechnol. 2016; 91(4): 865-875.
26. Simister RL, Poutasse CM, Thurston AM, Reeve JL, Baker MC, White HK. Degradation of oil
by fungi isolated from Gulf of Mexico beaches. Mar Pollut Bull. 2015; 100(1): 327-333.