حسگر بخار اتانول دما پایین برپایه نانوچندسازه H-CeO2/Fe:کارایی فراحساس، انتخابی و قابلتکرار
الموضوعات :الناز یوسفیان 1 , سوسن صمدی 2 , خدیجه کلاته 3 , محمد یوسفی 4 , علی پارسا 5
1 - دانشجوی دکتری شیمی تجزیه، گروه شیمی، واحد یادگار امام خمینی (ره) شهرری، دانشگاه آزاد اسلامی، تهران، ایران.
2 - استادیار شیمی تجزیه، گروه شیمی، واحد یادگار امام خمینی (ره) شهرری، دانشگاه آزاد اسلامی، تهران، ایران.
3 - استادیار شیمی معدنی، گروه شیمی، واحد یادگار امام خمینی (ره) شهرری، دانشگاه آزاد اسلامی، تهران، ایران.
4 - دانشیار شیمی معدنی، گروه شیمی، واحد یادگار امام خمینی (ره) شهرری، دانشگاه آزاد اسلامی، تهران، ایران.
5 - استادیار شیمی تجزیه، گروه شیمی، واحد یادگار امام خمینی (ره) شهرری، دانشگاه آزاد اسلامی، تهران، ایران.
الکلمات المفتاحية: حسگر گازی, سریا توخالی, ترکیبهای آلی فرار (VOCs), نانوچندسازه,
ملخص المقالة :
در این پژوهش، نانوچندسازه H-CeO2/Fe به روش سل-ژل با کمک آب گرمایی سنتز و حساسیت این حسگر گازی نسبت به اتانول، 2-پروپانول و متانول، بررسی شد. روشهای پراش پرتو ایکس (XRD)، میکروسکوپی الکترونی روبشی (SEM)، طیف سنجی تفکیک انرژی (EDS)، میکروسکوپی الکترونی عبوری (TEM) و BET برای بررسی ویژگی ساختاری و ریخت شناسی نانوچندسازه H-CeO2/Fe استفاده شد. با درنظرگرفتن شرایط عملیاتی در دمای C° 29 و رطوبت نسبی (RH) 45% حساسیت حسگر ساخته شده به اتانول نسبت به سایر ترکیب های آلی فرار، بالاتر بود. عامل های حساسیت، تکرارپذیری و زمانهای پاسخ و بازیابی به عنوان ویژگیهای عملکردی و عامل های انحراف استاندارد نسبی (RSD)، حد تشخیص (LOD) و ضریب تعیین نیز مورد ارزیابی و بررسی قرار گرفتند. نتیجه ها نشان داد که میتوان از حسگر H-CeO2/Fe برای اندازهگیری کمی و کیفی اتانول استفاده کرد. سازوکار پاسخدهی حسگر نسبت به اتانول نیز بحث و بررسی شد.
[1] Righettoni, M.; Tricoli, A.; Pratsinis, S.E.; Anal. Chem. 82, 3581–3587, 2010.
[2] Li, G.; Cheng, Z.; Xiang, Q.; Yan, L.; Wang, X.; Xu, J.Q.; Sens. Actuat. B: Chem. 283, 590–601, 2019.
[3] Hunter, G.W.; Akbar, S.; Bhansali, S.; Daniele, M.; Erb, P.D.; Johnson, K.; Liu, C.C.; Miller, D.; Oralkan, O.; Hesketh, P.J.; Manickam, P.; Vander Wal, R.L.; J. Electrochem. Soc. 167, 037570, 2020.
[4] Amiri, V.; Roshan, H.; Mirzaei, A.; Neri, G.; Ayesh, A.I.; Chemosensors 89(4), 105, 2020.
[5] Zito, C.A.; Perfecto, T.M.; Dippel, A.C.; Volanti, D.P.; Koziej, D.; ACS Appl. Mater. Interfaces 12(15), 17745–17751, 2020.
[6] Zou, Y.; Chen, S.; Sun, J.; Liu, J.; Che, Y.; Liu, X.; Zhang, J.; Yang, D.; ACS Sens. 2(7), 897–902, 2017.
[7] Wongrat, E.; Chanlek, N.; Chueaiarrom, C.; Thupthimchun, W.; Samransuksamer, B.; Choopun, S.; Ceram. Int. 43(1), 557-566, 2017.
[8] Vuong, N.M.; Hieu, N.M.; Hieu, H.N.; Yi, H.; Kim, D.; Han, Y.S.; Kim, M.; Sens. Actuat. B Chem. 192, 327– 333, 2014.
[9] Wang, P.; Sui, L.; Yu, H.; Zhang, X.; Cheng, X.; Gao, S.; Zhao, H.; Huo, L.; Xu, Y.; Wu, H.; Sens. Actuat. B Chem. 326, 128796, 2021.
[10] Majhi, S.M.; Rai, P.; Yu, Y.; ACS Appl. Mater. Interfaces 7(18), 9462–9468, 2015.
[11] Liu, J.; Dai, M.; Wang, T.; Sun, P.; Liang, X.; Lu, G.; Shimanoe, K.; Yamazoe, N.; ACS Appl. Mater. Interfaces 8(10), 6669–6677, 2016.
[12] Su, C.; Zhang, L.; Han, Y.; Ren, C.; Zeng, M.; Zhou, Z.; Su, Y.; Hu, N.; Wei, H.; Yang, Z.; Sens. Actuat. B. Chem. 304, 127347, 2020.
[13] Cao, P.; Yang, Z.; Navale, S.T.; Han, S.; Liu, X.; Liu, W.; Lu, Y.; Stadler, F.J.; Zhu, D.; Sens. Actuat. B Chem. 298, 126850, 2019.
[14] Deng, W.; Chen, D.; Hu, J.; Chen, L.; RSC Adv. 98(5), 80158-80169, 2015.
[15] Caruso, R.; Susha, A.; Caruso, F.; Chem. Mater. 13(2), 400-409, 2001.
[16] Hu, J.; Chen, M.; Fang, X.; Wu, L.; Chem. Soc. Rev. 11(40), 5472, 2011.
[17] Zhang, J.; J. Phys. Chem. Lett. 1(4), 686-695, 2010.
[18] Zakaria, S.A.; Samadi, S.; Cordshooli, G.A.; Sens. Actuat. A Phys. 318, 112226, 2021.
[19] Hu, J.; Sun, Y.; Xue, Y.; Zhang, M.; Li, P.; Lian, K.; Zhuiykov, S.; Zhang, W.; Chen, Y.; Sens. Actuat. B Chem. 257, 124–135, 2018.
[20] Rasouli, Z.; Yousefi, M.; Samadi, S.; Kalateh, K.; Torbati, M.B.; J. Nanoanalysis 4(4), 280-289, 2018.
[21] Samadi, S.; Cordshooli, G.A.; Yousefi, M.; Kalateh, K.; Zakaria, S.A.; Sen. Review 38(4), 458-466, 2018.
[22] Yan, S.; Liang, X.; Song, H.; Ma, S.; Lu, Y.; Ceram. Int. 44(1), 358-363, 2018.
[23] Hosseinzadeh, H.; Tohidi, G.; J. Saudi Chem. Soc. 101371, 2021.
[24] Burgués, J.; Jiménez-Soto, J.M.; Marco, S.; Anal. Chim. Acta. 1013, 13-25, 2018.
[25] Song, Y.; Zhang, Y.; Ma, M.; Ren, J.; Liu, C.; Tan, J.; Ceram. Int. 46, 16337–16344, 2020.
[26] Xu, J.; Han, J.; Zhang, Y.; Sun, Y.; Xie, B.; Sens. Actuat. B Chem. 132, 334–339, 2008.
_||_[1] Righettoni, M.; Tricoli, A.; Pratsinis, S.E.; Anal. Chem. 82, 3581–3587, 2010.
[2] Li, G.; Cheng, Z.; Xiang, Q.; Yan, L.; Wang, X.; Xu, J.Q.; Sens. Actuat. B: Chem. 283, 590–601, 2019.
[3] Hunter, G.W.; Akbar, S.; Bhansali, S.; Daniele, M.; Erb, P.D.; Johnson, K.; Liu, C.C.; Miller, D.; Oralkan, O.; Hesketh, P.J.; Manickam, P.; Vander Wal, R.L.; J. Electrochem. Soc. 167, 037570, 2020.
[4] Amiri, V.; Roshan, H.; Mirzaei, A.; Neri, G.; Ayesh, A.I.; Chemosensors 89(4), 105, 2020.
[5] Zito, C.A.; Perfecto, T.M.; Dippel, A.C.; Volanti, D.P.; Koziej, D.; ACS Appl. Mater. Interfaces 12(15), 17745–17751, 2020.
[6] Zou, Y.; Chen, S.; Sun, J.; Liu, J.; Che, Y.; Liu, X.; Zhang, J.; Yang, D.; ACS Sens. 2(7), 897–902, 2017.
[7] Wongrat, E.; Chanlek, N.; Chueaiarrom, C.; Thupthimchun, W.; Samransuksamer, B.; Choopun, S.; Ceram. Int. 43(1), 557-566, 2017.
[8] Vuong, N.M.; Hieu, N.M.; Hieu, H.N.; Yi, H.; Kim, D.; Han, Y.S.; Kim, M.; Sens. Actuat. B Chem. 192, 327– 333, 2014.
[9] Wang, P.; Sui, L.; Yu, H.; Zhang, X.; Cheng, X.; Gao, S.; Zhao, H.; Huo, L.; Xu, Y.; Wu, H.; Sens. Actuat. B Chem. 326, 128796, 2021.
[10] Majhi, S.M.; Rai, P.; Yu, Y.; ACS Appl. Mater. Interfaces 7(18), 9462–9468, 2015.
[11] Liu, J.; Dai, M.; Wang, T.; Sun, P.; Liang, X.; Lu, G.; Shimanoe, K.; Yamazoe, N.; ACS Appl. Mater. Interfaces 8(10), 6669–6677, 2016.
[12] Su, C.; Zhang, L.; Han, Y.; Ren, C.; Zeng, M.; Zhou, Z.; Su, Y.; Hu, N.; Wei, H.; Yang, Z.; Sens. Actuat. B. Chem. 304, 127347, 2020.
[13] Cao, P.; Yang, Z.; Navale, S.T.; Han, S.; Liu, X.; Liu, W.; Lu, Y.; Stadler, F.J.; Zhu, D.; Sens. Actuat. B Chem. 298, 126850, 2019.
[14] Deng, W.; Chen, D.; Hu, J.; Chen, L.; RSC Adv. 98(5), 80158-80169, 2015.
[15] Caruso, R.; Susha, A.; Caruso, F.; Chem. Mater. 13(2), 400-409, 2001.
[16] Hu, J.; Chen, M.; Fang, X.; Wu, L.; Chem. Soc. Rev. 11(40), 5472, 2011.
[17] Zhang, J.; J. Phys. Chem. Lett. 1(4), 686-695, 2010.
[18] Zakaria, S.A.; Samadi, S.; Cordshooli, G.A.; Sens. Actuat. A Phys. 318, 112226, 2021.
[19] Hu, J.; Sun, Y.; Xue, Y.; Zhang, M.; Li, P.; Lian, K.; Zhuiykov, S.; Zhang, W.; Chen, Y.; Sens. Actuat. B Chem. 257, 124–135, 2018.
[20] Rasouli, Z.; Yousefi, M.; Samadi, S.; Kalateh, K.; Torbati, M.B.; J. Nanoanalysis 4(4), 280-289, 2018.
[21] Samadi, S.; Cordshooli, G.A.; Yousefi, M.; Kalateh, K.; Zakaria, S.A.; Sen. Review 38(4), 458-466, 2018.
[22] Yan, S.; Liang, X.; Song, H.; Ma, S.; Lu, Y.; Ceram. Int. 44(1), 358-363, 2018.
[23] Hosseinzadeh, H.; Tohidi, G.; J. Saudi Chem. Soc. 101371, 2021.
[24] Burgués, J.; Jiménez-Soto, J.M.; Marco, S.; Anal. Chim. Acta. 1013, 13-25, 2018.
[25] Song, Y.; Zhang, Y.; Ma, M.; Ren, J.; Liu, C.; Tan, J.; Ceram. Int. 46, 16337–16344, 2020.
[26] Xu, J.; Han, J.; Zhang, Y.; Sun, Y.; Xie, B.; Sens. Actuat. B Chem. 132, 334–339, 2008.