نانوچندسازه منیزیم فریت/گرافن اکسید کاهیده و کاربرد فتوکاتالیستی آن در تخریب آلاینده و تولید سوخت
الموضوعات :مجید غنیمتی 1 , محسن لشگری 2 , واسیلیوس بیناس 3
1 - پژوهشگر پسادکتری دانشکده شیمی، دانشگاه تحصیلات تکمیلی علوم پایه زنجان، ایران
2 - دانشیار گروه شیمی فیزیک، دانشکده شیمی، دانشگاه تحصیلات تکمیلی علوم پایه زنجان، ایران
3 - پژوهشگرموسسه ساختار الکترونیکی و لیزر هراکلیون، بنیاد تحقیقات و فناوری–هلاس، یونان
الکلمات المفتاحية: تولید هیدروژن, هیدروژن سولفید, تخریب فتوکاتالیستی آلایندهها, نانوچندسازه نیمرسانا, منیزیم فریت, گرافن اکسید کاهیده, حذف رنگ متیل اورانژ,
ملخص المقالة :
تهیه مواد نانوچندسازه کارآمد با استفاده از عناصر فراوان زمین و ترکیب های دوستدار محیط زیست و کاربرد آن ها با هدف تخریب نور کاتالیستی مواد خطرناک و تولید سوخت، یک راهبرد پایدار برای حذف آلاینده و تامین هیدروژن به عنوان سوخت سبز (فاقد کربن) در دنیای مدرن است. در این پژوهش، نیم رسانای نانوساختار منیزیم فریت (MgFe2O4) سنتز و برای تولید گاز هیدروژن از راه شکافت نوری محلول قلیایی سیر شده از H2S و تخریب فتوکاتالیستی آلاینده مقاوم رنگ آزو (متیل اورانژ) استفاده شد. بررسی ها مشخص کرد فتوکاتالیست سنتزی، از توانایی لازم برای تخریب آلاینده و تولید هیدروژن برخوردار است. برای بهبود فعالیت فتوکاتالیست، پیش ساز گرافن اکسید به روش هامرز اصلاح شده تهیه و از آن به شکل مستقیم در سنتز آب گرمایی نانوچندسازه منیزیم فریت/گرافن اکسید کاهیده استفاده شد. شواهد نشان داد وجود گرافن اکسید کاهیده و تشکیل نانوچندسازه قادر است توانایی رنگ زدایی و تولید هیدروژن را از راه افزایش مساحت سطح فتوکاتالیست، کاهش بازترکیب الکترون-حفره و تقویت جذب فوتون، به مقدار قابل توجهی افزایش دهد. بازده تخریب پس از یک ساعت کار فتوواکنشگاه برابر با 84 درصد و سرعت آزادسازی هیدروژن برابر با 5567 میکرومول بر ساعت بر گرم فتوکاتالیست به دست آمد که بیانگر عملکرد خوب فتوکاتالیست نانوچندسازه برای حذف آلاینده و تولید سوخت است.
[1] Luo C, Wang S, Wu D, Cheng X, Ren H. UV/Nitrate photocatalysis for degradation of Methylene blue in wastewater: Kinetics, transformation products, and toxicity assessment. Environmental Technology & Innovation. 2022;25:102198. doi: 10.1016/j.eti.2021.102198
[2] Yönten V, Sanyürek NK, Kivanç MR. A thermodynamic and kinetic approach to adsorption of methyl orange from aqueous solution using a low cost activated carbon prepared from Vitis vinifera L. Surfaces and Interfaces. 2020;20:100529. doi: 10.1016/j.surfin.2020.100529
[3] Ahmad K, Parveen S, Aziz T, Naseem HA, Ashfaq M, Rauf A. Metal Organic Framework (KIUB-MOF-1) as efficient adsorbent for cationic and anionic dyes from brackish water. Journal of Molecular Structure. 2021;1242:130898. doi: 10.1016/j.molstruc.2021.130898
[4] Lashgari M, Ghanimati M. Photocatalytic degradation of H2S aqueous media using sulfide nanostructured solid-solution solar-energy-materials to produce hydrogen fuel. Journal of Hazardous materials. 2018;345:10-7. doi: 10.1016/j.jhazmat.2017.10.062
[5] Rao VN, Reddy NL, Kumari MM, Ravi P, Sathish M, Kuruvilla KM, Preethi V, Reddy KR, Shetti NP, Aminabhavi TM, Shankar MV. Photocatalytic recovery of H2 from H2S containing wastewater: Surface and interface control of photo-excitons in Cu2S@TiO2 core-shell nanostructures. Applied Catalysis B: Environmental. 2019;254:174-85. doi: 10.1016/j.apcatb.2019.04.090
[6] Lashgari M, Ghanimati M. An excellent heterojunction nanocomposite solar-energy material for photocatalytic transformation of hydrogen sulfide pollutant to hydrogen fuel and elemental sulfur: A mechanistic insight. Journal of Colloid and Interface Science. 2019;555:187-94. doi: 10.1016/j.jcis.2019.07.095
[7] Lashgari M, Ghanimati M. A new efficient eco-friendly quaternary solid-solution nanoenergy material for photocatalytic hydrogen fuel production from H2S aqueous feed. Chemical Engineering Journal. 2019;358:153-9. doi: 10.1016/j.cej.2018.10.011
[8] Mestre-Escudero R, Puerta-Arana A, González-Delgado ÁD. Assessment of a sour water treatment unit using process simulation, parametric sensitivity, and exergy analysis. ACS omega. 2020;5(37):23654-61. doi: 10.1021/acsomega.0c02300
[9] Vikrant K, Kim KH, Deep A. Photocatalytic mineralization of hydrogen sulfide as a dual-phase technique for hydrogen production and environmental remediation. Applied Catalysis B: Environmental. 2019;259:118025. doi: 10.1016/j.apcatb.2019.118025
[10] Deb A, Kanmani M, Debnath A, Bhowmik KL, Saha B. Ultrasonic assisted enhanced adsorption of methyl orange dye onto polyaniline impregnated zinc oxide nanoparticles: kinetic, isotherm and optimization of process parameters. Ultrasonics sonochemistry. 2019;54:290-301. doi: 10.1016/j.ultsonch.2019.01.028
[11] de Oliveira Guidolin T, Possolli NM, Polla MB, Wermuth TB, de Oliveira TF, Eller S, Montedo OR, Arcaro S, Cechinel MA. Photocatalytic pathway on the degradation of methylene blue from aqueous solutions using magnetite nanoparticles. Journal of Cleaner Production. 2021;318:128556. doi: 10.1016/j.jclepro.2021.128556
[12] Khan AU, Zahoor M, Rehman MU, Shah AB, Zekker I, Khan FA, Ullah R, Albadrani GM, Bayram R, Mohamed HR. Biological mineralization of methyl orange by pseudomonas aeruginosa. Water. 2022;14(10):1551. doi: 10.3390/w14101551
[13] Liu S, Wang W, Cheng Y, Yao L, Han H, Zhu T, Liang Y, Fu J. Methyl orange adsorption from aqueous solutions on 3D hierarchical PbS/ZnO microspheres. Journal of colloid and interface science. 2020;574:410-20. doi: 10.1016/j.jcis.2020.04.057
[14] Dhir R. Photocatalytic degradation of methyl orange dye under UV irradiation in the presence of synthesized PVP capped pure and gadolinium doped ZnO nanoparticles. Chemical Physics Letters. 2020;746:137302. doi: 10.1016/j.cplett.2020.137302
[15] Narendhran S, Shakila PB, Manikandan M, Vinoth V, Rajiv P. Spectroscopic investigation on photocatalytic degradation of methyl orange using Fe2O3/WO3/FeWO4 nanomaterials. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020;232:118164. doi: 10.1016/j.saa.2020.118164
[16] Naikwade AG, Jagadale MB, Kale DP, Gophane AD, Garadkar KM, Rashinkar GS. Photocatalytic degradation of methyl orange by magnetically retrievable supported ionic liquid phase photocatalyst. ACS omega. 2020;5(1):131-44. doi: 10.1021/acsomega.9b02040
[17] Sun X, Xu D, Dai P, Liu X, Tan F, Guo Q. Efficient degradation of methyl orange in water via both radical and non-radical pathways using Fe-Co bimetal-doped MCM-41 as peroxymonosulfate activator. Chemical Engineering Journal. 2020;402:125881. doi: 10.1016/j.cej.2020.125881
[18] Lashgari M, Ghanimati M. Pollutant photo-conversion strategy to produce hydrogen green fuel and valuable sulfur element using H2S feed and nanostructured alloy photocatalysts: Ni-dopant effect, energy diagram and photo-electrochemical characterization. Chemical Engineering Research and Design. 2020;162:85-93. doi: 10.1016/j.cherd.2020.07.024
[19] Mark JA, Venkatachalam A, Pramothkumar A, Senthilkumar N, Jothivenkatachalam K, prince Jesuraj J. Investigation on structural, optical and photocatalytic activity of CoMn2O4 nanoparticles prepared via simple co-precipitation method. Physica B: Condensed Matter. 2021;601:412349. doi: 10.1016/j.physb.2020.412349
[20] Yuan X, Wang H, Wu Y, Chen X, Zeng G, Leng L, Zhang C. A novel SnS2–MgFe2O4/reduced graphene oxide flower-like photocatalyst: Solvothermal synthesis, characterization and improved visible-light photocatalytic activity. Catalysis Communications. 2015;61:62-6. doi: 10.1016/j.catcom.2014.12.003
[21] Bose S, Tripathy BK, Debnath A, Kumar M. Boosted sono-oxidative catalytic degradation of Brilliant green dye by magnetic MgFe2O4 catalyst: Degradation mechanism, assessment of bio-toxicity and cost analysis. Ultrasonics Sonochemistry. 2021;75:105592. doi: 10.1016/j.ultsonch.2021.105592
[22] Sahoo SK, Hota G. Surface functionalization of GO with MgO/MgFe2O4 binary oxides: A novel magnetic nanoadsorbent for removal of fluoride ions. Journal of Environmental Chemical Engineering. 2018;6(2):2918-31. doi: 10.1016/j.jece.2018.04.054
[23] Fan W, Li M, Bai H, Xu D, Chen C, Li C, Ge Y, Shi W. Fabrication of MgFe2O4/MoS2 heterostructure nanowires for photoelectrochemical catalysis. Langmuir. 2016;32(6):1629-36. doi: 10.1021/acs.langmuir.5b03887
[24] Jia J, Du X, Zhang Q, Liu E, Fan J. Z-scheme MgFe2O4/Bi2MoO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity for malachite green removal. Applied Surface Science. 2019;492:527-39. doi: 10.1016/j.apsusc.2019.06.258
[25] Cai D, Qu B, Li Q, Zhan H, Wang T. Reduced graphene oxide uniformly anchored with ultrafine CoMn2O4 nanoparticles as advance anode materials for lithium and sodium storage. Journal of Alloys and Compounds. 2017;716:30-6. doi: 10.1016/j.jallcom.2017.05.023
[26] Aghajani M, Safaei E, Karimi B. Selective and green oxidation of sulfides in water using a new iron (III) bis (phenol) amine complex supported on functionalized graphene oxide. Synthetic Metals. 2017;233:63-73. doi: 10.1016/j.synthmet.2017.08.003
[27] Yan Z, Gao J, Li Y, Zhang M, Guo M. Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite. Rsc Advances. 2015;5(112):92778-87. doi: 10.1039/C5RA17145H
[28] Ghanbari D, Salavati-Niasari M. Hydrothermal synthesis of different morphologies of MgFe2O4 and magnetic cellulose acetate nanocomposite. Korean Journal of Chemical Engineering. 2015;32:903-10. doi: 10.1007/s11814-014-0306-x
[29] Wang Y, Hu G, Cao Y, Peng Z, Du K. One-pot synthesis of pre-reduced graphene oxide for efficient production of high-quality reduced graphene oxide and its lithium storage application. Materials Chemistry and Physics. 2021;265:124523. doi: 10.1016/j.matchemphys.2021.124523
[30] Zhang P, Liu H, Li X. Plasmon-driven engineering in bimetallic CuCo combined with reduced graphene oxide for photocatalytic overall water splitting. Applied Surface Science. 2021;559:149865. doi: 10.1016/j.apsusc.2021.149865
[31] Abbas M, Trari M. Contribution of adsorption and photo catalysis for the elimination of Black Eriochrome (NET) in an aqueous medium-optimization of the parameters and kinetics modeling. Scientific African. 2020;8:e00387. doi: 10.1016/j.sciaf.2020.e00387
[32] Boukhatem H, Djouadi L, Abdelaziz N, Khalaf H. Synthesis, characterization and photocatalytic activity of CdS–montmorillonite nanocomposites. Applied Clay Science. 2013;72:44-8. doi: 10.1016/j.clay.2013.01.011
[33] Rout DR, Jena HM. Removal of malachite green dye from aqueous solution using reduced graphene oxide as an adsorbent. Materials Today: Proceedings. 2021;47:1173-82. doi: 10.1016/j.matpr.2021.03.406
[34] Gomez-Alvarez MA, Diaz A, Mota I, Cabrera V, Resendiz L. Nanocomposites of zinc oxide on graphene oxide: A rapid reduction of graphene oxide. Digest Journal of Nanomaterials & Biostructures (DJNB). 2021;16(1). doi: chalcogen.ro/101_Gomez-AlvarezMA
[35] El Shabrawy S, Bocker C, Rüssel C. Crystallization of MgFe2O4 from a glass in the system K2O/B2O3/MgO/P2O5/Fe2O3. Solid State Sciences. 2016;60:85-91. doi: 10.1016/j.solidstatesciences.2016.08.007
[36] Lashgari M, Ghanimati M. A highly efficient nanostructured quinary photocatalyst for hydrogen production. International Journal of Energy Research. 2015;39(4):516-23. doi: 10.1002/er.3265
[37] Wang L, Yang H, Yang J, Yang Y, Wang R, Li S, Wang H, Ji S. The effect of the internal magnetism of ferromagnetic catalysts on their catalytic activity toward oxygen reduction reaction under an external magnetic field. Ionics. 2016:2195-202. doi: 10.1007/s11581-016-1746-6
[38] Yamamoto T, Tayakout-Fayolle M, Geantet C. Gas-phase removal of hydrogen sulfide using iron oxyhydroxide at low temperature: Measurement of breakthrough curve and modeling of sulfidation mechanism. Chemical Engineering Journal. 2015;262:702-9. doi: 10.1016/j.cej.2014.09.093
[39] Zhong W, Jiang T, Dang Y, He J, Chen SY, Kuo CH, Kriz D, Meng Y, Meguerdichian AG, Suib SL. Mechanism studies on methyl orange dye degradation by perovskite-type LaNiO3-δ under dark ambient conditions. Applied Catalysis A: General. 2018;549:302-9. doi: 10.1016/j.apcata.2017.10.013
[40] Azad K, Gajanan P. Photodegradation of methyl orange in aqueous solution by the visible light active Co: La: TiO2 nanocomposite. Chem. Sci. J. 2017;8(3):1000164-74. doi: 10.4172/2150-3494.10001
_||_