ملخص المقالة :
Soil detachment is known as an important process in soil erosion and its quantification is necessary to establish a basic understanding of erosion. This study was carried out to find the best flow erosivity indicator(s) for predicting detachment rate at low slopes. For this purpose, 12 experiments including 6 flow discharges (75, 100, 125, 150, 175 and 200 ml/s) and 2 slope gradients (1.5 and 2%) were performed. Accordingly, different stream powers less than 0.175 W m-2 were simulated. Soil detachment rate was related to flow depth, flow velocity, unit flow discharge, shear stress, unit stream power and stream power as erosivity indicators. The results showed that the relationship was more significant at slope 2% (R2>0.94) than slope 1.5% (R2>0.84). Among different indicators, flow velocity and unit stream power exhibited unlinear relationships as exponential, while the others showed linear ones. Considering flow depth, unit flow discharge and unit stream power a range of critical values were obtained at different slopes. It was found that for shallow surface flows, measurement of flow depth is difficult while, unit flow discharge can be measured, accurately. Finally, the finding of this research reveals that stream power is the best indicator for predicting soil detachment rate. [Sirjani and Mahmoodabadi. Study On Flow Erosivity Indicators for Predicting Soil Detachment Rate at Low Slopes. International Journal of Agricultural Science, Research and Technology, 2012; 2(2):55-61].
المصادر:
1. Defersha, M. B., Quraishi, S. and Melesse, A. (2011). The effect of slope steepness and antecedent moisture content on interrill erosion, runoff and sediment size distribution in the highlands of Ethiopia. Hydrol. Earth Syst. Sci., 15: 2367-2375.
2. Deng, Z. Q., Lima, J. L. D. and Jung, H. S. (2008). Sediment transport rate-based model for rainfall-induced soil erosion. Catena, 76: 54-62.
3. Erskine, W. D., Mahmoudzadeh, A. and Myers, C. (2002). Land use effects on sediment yields and soil loss rates in small basins of Triassic sandstone near Sydney, NSW, Australia. Catena, 49, 271-287.
4. Fu, S., Liu, B., Liu, H. and Xu, L. (2011). The effect of slope on interrill erosion at short slopes. Catena, 84, 29-34.
5. Ghadiri, H. and Rose, C. W. (1992). An Introduction to Nonpoint Source Pollution Modeling. In: Ghadiri, H. and Rose, C. W., (Eds.), Modeling Chemical Transport in Soils, Natural and Applied Contaminants. LEWIS Publication, pp. 1-14.
6. Gimenez, L. and Govers, G. (2002). Flow detachment by concentrated flow on smooth and irregular beds. Soil Sci. Soc. Am. J., 66:1475-1483.
7. Govers, G. (1992). Evaluation of transport capacity formulae for overland flow. In: Parsons, A. J. and Abrahams, A. D. (Eds.), Overland flow: hydraulics and erosion mechanics. UCL Press, London. pp. 243-273.
8. Hairsine, P. B. and Rose, C. W. (1992a). Modeling water erosion due to overland flow using physical principles. 1. Sheet flow. Water Resour. Res., 28:237-243.
9. Hairsine, P. B. and Rose, C. W. (1992b). Modeling water erosion due to overland flow using physical principles. 1. Rill flow. Water Resour. Res., 28:245-250.
10. Moore, I. D., and Burch, G. J. (1986). Sediment transport capacity of sheet and rill flow: Application to unit stream power theory. Water Resour. Res. 22:1350-1360.
11. Morgan, R. P., Quiton, J. N., Smith, R. E., Govers, G., Poesen, J. W., Auerswald, K., Chisci, G., Torri, D. and Stycaen, M. E. (1998). The European soil erosion model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf. Process. Landforms, 23(6): 527-544.
12. Nearing, M. A., Bradford, J. M. and Parker, S. C. (1991). Soil detachment by shallow flow at low slopes. Soil Sci. Soc. Am. J., 55: 339-344.
13. Nearing, M. A., Foster, G. R., Lane, L. J. and Finkner, S. C. (1989). A process-based soil erosion model for USDA-Water Erosion Prediction Project Technology. Trans. ASAE., 32(5): 1587-1593.
14. Nearing, M. A., Norton, L. D., Bulgakov, D. A. and Larionov, G. A. (1997). Hydraulics and erosion in eroding rills. Water Resour. Res., 33:865-876.
15. Nearing, M.A. (2004). Capabilities and limitations of erosion models and data. ISCO 2004. 13th International Soil Conservation Organization Conference. Brisbane, Australia.
16. Page, A. L., Miller, R. H. and Jeeney, D. R. (1992a). Methods of Soil Analysis, Part 1. Physical Properties. SSSA Pub., Madison. 1750 p.
17. Page, A. L., Miller, R. H. and Jeeney, D. R. (1992b). Methods of Soil Analysis, Part 2. Chemical and Mineralogical Properties. SSSA Pub., Madison. 1159 p.
18. Pan, C., Shangguan, Z. and Lei, T. (2006). Influences of grass and moss on runoff and sediment yield on sloped loess surfaces under simulated rainfall. Hydrol. Process., 20: 3815-3824.
19. Pansu, M. and Gautheyrou, J. (2006). Handbook of Soil Analysis, Mineralogical, Organic and Inorganic Methods. Springer. 993 p.20. Parsons, A. J., Abrahams, A. D. and Wainwright, J. (1994). On determining resistance to interrill overland flow. Water Reso. Res., 30, 3515-3521.
21. Pieri, L., Bittelli, M., Wu, J. Q., Dun, S., Flanagan, D. C., Pisa, P. R., Ventura, F. and Salvatorelli, F. (2007). Using the Water Erosion Prediction Project (WEPP) model to simulate field-observed runoff and erosion in the Apennines mountain range, Italy. J. Hydro., 336: 84-97.
22. Proffitt, A. P. B. and Rose, C. W. (1991). Soil erosion processes: I. The relative importance of rainfall detachment and runoff entrainment. Aust. J. Soil Res., 29: 671-683.
23. Proffitt, A. P. B., Hairsine, P. B. and Rose, C. W. (1993). Modeling soil erosion by overland flow: Application over a range of hydraulic conditions. Trans. ASAE., 36 (6): 1743-1753.
24. Rose, C. W., Parlange, J. Y., Sander, G. C., Campbell, S. Y. and Barry, D. A. (1983). Kinematic flow approximation to runoff on a plane: An approximate analytic solution. J. Hydro., 62: 363-369.
25. Rose, C. W., Williams, J. R., Sander, G. C. and Barry, D. A. (1983a). A mathematical model of soil erosion and deposition processes: I. Theory for a plane land element. Soil Sci. Soc. Am. J., 47: 991-995.
26. Rose, C. W., Williams, J. R., Sander, G. C. and Barry, D. A. (1983b). A mathematical model of soil erosion and deposition processes: II. Application to data from an arid-zone catchment. Soil Sci. Soc. Am. J., 47: 996-1000.
27. Rose, C. W., Yu, B., Ghadiri, H., Asadi, H., Parlange, J. Y., Hogarth, W. L. and Hussein, J. (2006). Dynamic erosion of soil in steady sheet flow. J. Hydro. 333, 449-458.
28. Shih, H. M. and Yang, C. T. (2009). Estimating overland flow erosion capacity using unit stream power. Int. J. Sediment Res., 24: 46-62.
29. Walkley, A., Black, I. A. (1934). An examination of the degtjareff method for determining soil organic matter, and proposed modification of the chromic acid titration method. Soil Sci., 37: 29-38.
30. Yan, L. J., Yu, X. X., Lei, T. W., Zhang, Q. W. and Qu, L. Q. (2008). Effect of transport capacity and erodibility on rill erosion processes: A model study the Finite Element method. Geoderma, 146: 114-120.
31. Yang, C.T. (1972). Unit stream power and sediment transport. J. Hydraulics Div. Am. Soc. Civil Eng., 98:1805-1825.
32. Zhang, G. H., Liu, B. Y., Liu, G. B., He, X. W. and Nearing, M. A. (2003). Detachment of undisturbed soil by shallow flow. Soil Sci. Soc. Am. J., 67: 713-719.
33. Zhang, G. H., Liu, B. Y., Nearing, M. A., Huang, C. H. and Zhang, K. L. (2002). Soil detachment by shallow flow. Trans. ASAE., 45: 351-357.
34. Zhang, G. H., Liu, Y. M., Han, Y. F. and Zhang, X. C. (2009). Sediment transport and soil detachment on steep slopes: I. Transport capacity estimation. Soil Sci. Soc. Am. J., 73: 1291-1297.
35. Zhang, G. H., Wang, L. L., Tang, K. M., Luo, R. T. and Zhang, X. C. (2011). Effect of sediment size on transport capacity of overland flow on steep slopes. Hydro. Sci. J., 56(7): 1289-1299.