Paclobutrazol Effect on Narcissus tazetta: A Guide to Understanding Endogenous Cues Improved Flowering
الموضوعات :Shekoofeh Hajhashemi 1 , Omolbanin Jahantigh 2
1 - Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan, Iran
2 - Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan, Iran
الکلمات المفتاحية: germination, Physiological characteristics, Plant growth retardant, Morphological parameters, Plant anatomy,
ملخص المقالة :
Paclobutrazol (PBZ) retards plant growth through reducing gibberellin biosynthesis. Flowering is critical for Narcissus tazetta as a unique cut flower with commercial value. Hence, every new advancement into the cultivation of N. tazetta is crucial to meet improving its quality and yield. The pre-treatment of Narcissus bulbs with different PBZ levels (25, 50 and 100 mM) induced a significant increase in the flowering percent, flower size, scape diameter, phloem and xylem vessels, pith cavity size, leaf thickness, spongy and palisade mesophylls, and vascular bundle width, despite a significant decrease in height and fresh mass of scape at 100 mM. Mean germination time of bulbs and flowers significantly increased at 50 and 100 mM PBZ, while germination index of bulbs showed a significant increase at 25 mM. Under PBZ treatment, the observed increase in the photosynthetic pigments was followed by high accumulation of sugars. Moreover, different concentrations of PBZ significantly increased anthocyanin, phenols, proteins, proline, and total antioxidant activity in the Narcissus leaves and flowers. No changes in H2O2, malondialdehyde, and activity of catalase and ascorbate peroxidase can be related to no stress-inductive effects of PBZ treatment in Narcissus. Overall, the positive effect of PBZ on physiological, morphological and anatomical function in flowering procedure in N. tazetta offer suggestions of its future usage in other ornamental bulbous plants.
Baker, D. E. and M. C. Amacher. 1983. Nickel, copper, zinc, and cadmium. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 323-336
Bates, L., R. Waldren and I. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39, (1) 205-207.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72, (1-2) 248-254.
Bremner, J. 1960. Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science, 55, (1) 11-33.
Chandel, A., M. Thakur, G. Singh, R. Dogra, A. Bajad, V. Soni and B. Bhargava. 2023. Flower regulation in floriculture: an agronomic concept and commercial use. Journal of Plant Growth Regulation, 42, (4) 2136-2161.
Chen, X., M. Nowicki, P. A. Wadl, C. Zhang, T. G. Köllner, M. Payá‐Milans, M. L. Huff, M. E. Staton, F. Chen and R. N. Trigiano. 2023. Chemical profile and analysis of biosynthetic pathways and genes of volatile terpenes in Pityopsis ruthii, a rare and endangered flowering plant. Plos one, 18, (6) e0287524.
Daneshvar, M. and M. Heidari. 2011. Effects of planting density and depth of cut flowers narcissus bulbs (Narcissus tazetta) on quantitative traits in weather conditions Khuzestan (Mollasani). Journal of Horticultural Science, 3, (25) 304-309.
Demir, S. and F. G. Çelikel. 2018. Plant Height Control of Narcissus cv.‗ Ice Follies ‘by Gibberellin Inhibitors as Bulb Soak. YYU Journal of Agricultural Science, 28, 102-110.
Desta, B. and G. Amare. 2021. Paclobutrazol as a plant growth regulator. Chemical and Biological Technologies in Agriculture, 8, (1) 1-15.
Dubois, M., K. A. Gilles, J. K. Hamilton, P. T. Rebers and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28, (3) 350-356.
Fan, S., D. Zhang, C. Gao, S. Wan, C. Lei, J. Wang, X. Zuo, F. Dong, Y. Li and K. Shah. 2018. Mediation of flower induction by gibberellin and its inhibitor paclobutrazol: mRNA and miRNA integration comprises complex regulatory cross-talk in apple. Plant and Cell Physiology, 59, (11) 2288-2307.
Fletcher, R. A., A. Gilley, N. Sankhla and T. D. Davis. 2000. Triazoles as plant growth regulators and stress protectants. Horticultural Reviews, 24, 55-138.
Gholami, J., R. Ranjbar, M. Bahar, R. Choupannejad and S. Saed Moucheshi. 2018. Molecular detection and characterization of a stolbur phytoplasma associated with Narcissus tazetta phyllody in Iran. Journal of Phytopathology, 166, (5) 372-377.
Gohari, G., Z. Alavi, E. Esfandiari, S. Panahirad, S. Hajihoseinlou and V. Fotopoulos. 2020. Interaction between hydrogen peroxide and sodium nitroprusside following chemical priming of Ocimum basilicum L. against salt stress. Physiologia Plantarum, 168, (2) 361-373.
Gun, S., L. Uzun, M. Tuysuz, O. Erturk, H. Ilhan, M. A. Acıkgoz and B. Ozturk. 2023. Nanofiber mats containing lavender oil and methyl jasmonate as an innovative treatment to extend vase life in cut rose flowers. Postharvest Biology and Technology, 201, 112343.
Guo, L., X. Sun, Z. Li, Y. Wang, Z. Fei, C. Jiao, J. Feng, D. Cui, X. Feng and Y. Ding. 2019. Morphological dissection and cellular and transcriptome characterizations of bamboo pith cavity formation reveal a pivotal role of genes related to programmed cell death. Plant Biotechnology Journal, 17, (5) 982-997.
Hajihashemi, S. 2020. Characterization of exogenous nitric oxide effect on Crocus sativus response to different irrigation regimes. Journal of Plant Growth Regulation, 1-11.
Hajihashemi, S., M. Brestic, M. Landi and M. Skalicky. 2020a. Resistance of Fritillaria imperialis to freezing stress through gene expression, osmotic adjustment and antioxidants. Scientific Reports, 10, (1) 1-13.
Hajihashemi, S. and A. A. Ehsanpour. 2014. Antioxidant response of Stevia rebaudiana B. to polyethylene glycol and paclobutrazol treatments under in vitro culture. Applied Biochemistry and Biotechnology, 172, (8) 4038-4052.
Hajihashemi, S., J. M. Geuns and A. A. Ehsanpour. 2013. Gene transcription of steviol glycoside biosynthesis in Stevia rebaudiana Bertoni under polyethylene glycol, paclobutrazol and gibberellic acid treatments in vitro. Acta Physiologiae Plantarum, 35, (6) 2009-2014.
Hajihashemi, S. and O. Jahantigh. 2022. Nitric Oxide Effect on Growth, Physiological and Biochemical Processes, Flowering, and Postharvest Performance of Narcissus tazzeta. Journal of Plant Growth Regulation, 1-16.
Hajihashemi, S., M. Skalicky, M. Brestic and V. Pavla. 2020b. Cross-talk between nitric oxide, hydrogen peroxide and calcium in salt-stressed Chenopodium quinoa Willd. At seed germination stage. Plant Physiology and Biochemistry, 154, 657-664.
He, Y., R.-H. Tang, Y. Hao, R. D. Stevens, C. W. Cook, S. M. Ahn, L. Jing, Z. Yang, L. Chen and F. Guo. 2004. Nitric oxide represses the Arabidopsis floral transition. Science, 305, (5692) 1968-1971.
Heath, R. L. and L. Packer. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, (1) 189-198.
In, B.-C. and J. H. Lim. 2018. Potential vase life of cut roses: Seasonal variation and relationships with growth conditions, phenotypes, and gene expressions. Postharvest Biology and Technology, 135, 93-103.
Jacobsen, S. E., K. A. Binkowski and N. E. Olszewski. 1996. SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in Arabidopsis. Proceedings of the National Academy of Sciences, 93, (17) 9292-9296.
Jaleel, C. A., P. Manivannan, B. Sankar, A. Kishorekumar, S. Sankari and R. Panneerselvam. 2007. Paclobutrazol enhances photosynthesis and ajmalicine production in Catharanthus roseus. Process Biochemistry, 42, (11) 1566-1570.
Kaviani, B., M. R. Safari Motlagh and M. Ghorbanali Nazarpour. 2023. Effect of thyme essential oil and ethanol on vase life and some physiological traits of alstroemeria (Alstroemeria sp.). Iranian Journal of Plant Physiology, 13, (3) 4627-4636.
Khurana, A., J. P. Khurana and S. B. Babbar. 2011. Nitric oxide induces flowering in the duckweed Lemna aequinoctialis Welw. (Syn. L. paucicostata Hegelm.) under noninductive conditions. Journal of plant growth regulation, 30, (3) 378-385.
Kumar, S., Y. Wang, Y. Zhou, L. Dillard, F.-W. Li, C. A. Sciandra, N. Sui, R. Zentella, E. Zahn and J. Shabanowitz. 2023. Structure and dynamics of the Arabidopsis O-fucosyltransferase SPINDLY. Nature communications, 14, (1) 1538.
Mekapogu, M., O.-K. Kwon, H.-Y. Song and J.-A. Jung. 2022. Towards the improvement of ornamental attributes in chrysanthemum: recent progress in biotechnological advances. International Journal of Molecular Sciences, 23, (20) 12284.
Mishra, D. K. and L. Yadava. 2011. Influence of paclobutrazol application on the flower size and yield of China aster (Callistephus chinensis (L.) Nees). Journal of Applied Horticulture, 13, (2) 147-149.
Moon, J., S. S. Suh, H. Lee, K. R. Choi, C. B. Hong, N. C. Paek, S. G. Kim and I. Lee. 2003. The SOC1 MADS‐box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. The Plant Journal, 35, (5) 613-623.
Nagar, S., V. Singh, A. Arora, R. Dhakar, N. Singh, G. Singh, S. Meena, S. Kumar and R. Shiv Ramakrishnan. 2021. Understanding the role of gibberellic acid and paclobutrazol in terminal heat stress tolerance in wheat. Frontiers in Plant Science, 12, 692252.
Nakano, Y. and K. Asada. 1987. Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant and Cell Physiology, 28, (1) 131-140.
Nazarudin, M. A., R. M. Fauzi and F. Tsan. 2007. Effects of paclobutrazol on the growth and anatomy of stems and leaves of Syzygium campanulatum. Journal of Tropical Forest Science, 86-91.
Oliveira, M. B., M. G. F. Figueiredo, M. C. T. Pereira, M. A. Do Carmo Mouco, L. M. Ribeiro and M. O. Mercadante-Simões. 2020. Structural and cytological aspects of mango floral induction using paclobutrazol. Scientia Horticulturae, 262, 109057.
Persson, S., H. Wei, J. Milne, G. P. Page and C. R. Somerville. 2005. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proceedings of the National Academy of Sciences, 102, (24) 8633-8638.
Petridou, M., C. Voyiatzi and D. Voyiatzis. 2001. Methanol, ethanol and other compounds retard leaf senescence and improve the vase life and quality of cut chrysanthemum flowers. Postharvest Biology and Technology, 23, (1) 79-83.
Qian, J., N. Wang, W. Ren, R. Zhang, X. Hong, L. Chen, K. Zhang, Y. Shu, N. Hu and Y. Yang. 2022. Molecular dissection unveiling dwarfing effects of plant growth retardants on pomegranate. Frontiers in Plant Science, 13, 866193
Rashed, M. 2010. Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. Journal of Hazardous Materials, 178, (1-3) 739-746.
Ritonga, F. N., D. Zhou, Y. Zhang, R. Song, C. Li, J. Li and J. Gao. 2023. The Roles of Gibberellins in Regulating Leaf Development. Plants, 12, (6) 1243.
Savage, J. A., D. F. Haines and N. M. Holbrook. 2015. The making of giant pumpkins: how selective breeding changed the phloem of C ucurbita maxima from source to sink. Plant, Cell & Environment, 38, (8) 1543-1554.
Sharma, M., I. Gupta, R. Tisarum, D. R. Batish, S. Cha-Um and H. P. Singh. 2023. Paclobutrazol Improves the Chlorophyll Content and Antioxidant Activities of Red Rice in Response to Alkaline Stress. Journal of Soil Science and Plant Nutrition, 1-16.
Silverstone, A. L., T.-S. Tseng, S. M. Swain, A. Dill, S. Y. Jeong, N. E. Olszewski and T.-P. Sun. 2007. Functional analysis of SPINDLY in gibberellin signaling in Arabidopsis. Plant Physiology, 143, (2) 987-1000.
Singleton, V. and J. A. Rossi. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, (3) 144-158
Skalicky, M., J. Kubes, P. Vachova, S. Hajihashemi, J. Martinkova and V. Hejnak. 2020. Effect of Gibberellic Acid on Growing-Point Development of Non-Vernalized Wheat Plants under Long-Day Conditions. Plants, 9, (12) 1735.
Szôllôsi, R. and I. S. Varga. 2002. Total antioxidant power in some species of Labiatae (Adaptation of FRAP method). Acta Biologica Szegediensis, 46, (3-4) 125-127.
Terry, M. I., V. Ruiz-Hernández, D. J. Águila, J. Weiss and M. Egea-Cortines. 2021. The effect of post-harvest conditions in Narcissus sp. cut flowers scent profile. Frontiers in plant science, 11, 2144.
Tsegaw, T., S. Hammes and J. Robbertse. 2005. Paclobutrazol-induced leaf, stem, and root anatomical modifications in potato. HortScience, 40, (5) 1343-1346.
Upreti, K. K., Y. Reddy, S. S. Prasad, G. Bindu, H. Jayaram and S. Rajan. 2013. Hormonal changes in response to paclobutrazol induced early flowering in mango cv. Totapuri. Scientia Horticulturae, 150, 414-418.
Usenko, A., J. Chýlková, J. Váňa, O. Matvieiev, L. Janíková and R. Šelešovská. 2023. A new voltammetric approach for the determination of the growth retardant paclobutrazol in the presence of difenoconazole in pesticide preparations. Journal of Electroanalytical Chemistry, 935, 117360.
Velikova, V., I. Yordanov and A. Edreva. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151, (1) 59-66.
Verbruggen, N. and C. Hermans. 2008. Proline accumulation in plants: a review. Amino acids, 35, (4) 753-759
Wagner, G. J. 1979. Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant physiology, 64, (1) 88-93.
Wang, L.-H. and C.-H. Lin. 1992. The effect of paclobutrazol on physiological and biochemical changes in the primary roots of pea. Journal of experimental botany, 43, (10) 1367-1372.
Wei, X., S. Wu, X. Liang, K. Wang, Y. Li, B. Li, J. Ma and H. Liang. 2021. Paclobutrazol modulates endogenous level of phytohormones in inducing early flowering in Camellia tamdaoensis Hakoda et Ninh, a golden Camellia species. HortScience, 56, (10) 1258-1262.
Wellburn, A. R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of plant physiology, 144, (3) 307-313.
Xu, X., J. Tao, A. Xing, Z. Wu, Y. Xu, Y. Sun, J. Zhu, X. Dai and Y. Wang. 2022. Transcriptome analysis reveals the roles of phytohormone signaling in tea plant (Camellia sinensis L.) flower development. BMC Plant Biology, 22, (1) 471.
Zhang, S., D. Zhang, S. Fan, L. Du, Y. Shen, L. Xing, Y. Li, J. Ma and M. Han. 2016. Effect of exogenous GA3 and its inhibitor paclobutrazol on floral formation, endogenous hormones, and flowering-associated genes in ‘Fuji’apple (Malus domestica Borkh.). Plant Physiology and Biochemistry, 107, 178-186.
Zhang, Z.-W., Y.-F. Fu, Y.-H. Zhou, C.-Q. Wang, T. Lan, G.-D. Chen, J. Zeng, Y.-E. Chen, M. Yuan and S. Yuan. 2019. Nitrogen and nitric oxide regulate Arabidopsis flowering differently. Plant Science, 284, 177-184.