Effect of Dietary Supplementation of Aspergillus Xylanase on Broiler Chickens Performance
الموضوعات :سی.ای. اُییگو 1 , وی. ملامبو 2 , وی. موچنج 3 , یو. ماروم 4
1 - Department of Livestock and Pasture Science, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
2 - Department of Animal Science, Faculty of Agriculture and Natural Science, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa
3 - Department of Livestock and Pasture Science, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
4 - Department of Animal Science, School of Agricultural Science, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
الکلمات المفتاحية: glucose, carcass weight, health status, <i>Aspergillus</i> xylanase, <i>Lactobacillus</i>,
ملخص المقالة :
The effect of Aspergillus xylanase (ASXYL) supplementation to maize-soybean diets on serum aspartate aminotransferase, serum alanine aminotransferase, microbial examination, growth traits, carcass characteristics and meat quality traits of broiler chickens was investigated. Three hundred one-day-old mixed sex “Cobb 500” broiler chicks were allotted to 5 dietary treatments with 5 replicates of 12 birds each. The treatments include, ASXYL0 (0 g/kg), ASXYL10 (1 g/kg), ASXYL15 (1.5 g/kg), ASXYL20 (2 g/kg) and ASXYL25 (2.5 g/kg). Birds fed ASXYL20 had the highest (P<0.05) body weight with an improved feed conversion ratio (FCR) and a higher values for thigh, breast, wing and carcass yields. Neck weight was high (P<0.05) for fed birds ASXYL0, ASXYL15 and ASXYL20. Drumstick recorded higher (P<0.05) value for birds fed ASXYL20 though, similar to ASXYL10, ASXYL15 and ASXYL25. Drip and cooking loss decreased (P<0.05) with increased supplemental levels of ASXY while shear force increased (P<0.05) as ASXYL supplementation increased. Urea, aspartate aminotransferase and alanine aminotransferase decreased (P<0.05) with increased supplemental levels of ASXYL while glucose level increased (P<0.05) with increased levels of ASXYL supplementation. Supplementary ASXYL influenced (P<0.05) the proliferation of Lactobacillus counts in ileum and caecum while no difference (P>0.05) was observed on the population of Bifidobacteria and Escherichia coli in both ileum and caecum of broilers at the end of the feeding trial. It was concluded that dietary ASXYL20 produced a much improved body weight and retail cut yields. Again, the bio-markers showed that ASXYLimproved the health status of broiler chicken and the tested enzyme influenced a positive intestinal environment.
Abida N., Amber K., Zunaira A., Anam A., Bushra I., Shaneel K., Laiba R., Ramsha A. and Faiza N. (2017). Effect of supplementation of xylanase on feed efficiency and serum biochemistry in broilers. Res. J. Pharmacol. Pharmacol. 1, 1-9.
Ahmad Z., Butt M.S., Hussain R., Ahmed A. and Riaz M. (2013). Effect of oral application of xylanase on some hematological and serum biochemical parameters in broilers. Pakistan Vet. J. 33, 388-390.
Alaa A.B., David L.H., Geert G., Adnan A.B. and Philip F. (2014). Exogenous proteases for meat tenderization. Crit. Rev. Food Sci. Nutr. 54, 1012-1031.
Alam M.J., Howlider M.A.R., Pramanik M.A.H. and Haque M.A. (2003). Effect of exogenous enzyme in diet on broiler performance. Int. J. Poult. Sci. 2, 168-173.
Albazaz I.R. and Büyükünal Bal E.B. (2014). Micro-flora of digestive tract in poultry. KSU J. Nat. Sci. 17, 39-42.
Al-Harthi M.A. (2014). The chemical composition and nutrient profiles and energy values of olive cake for poultry diets. Life Sci. J. 11(9), 159-165.
Allouche L., Madani T., Hamouda A., Boucherit M.R., Taleb H., Samah O., Rahamani K. and Touabati A. (2015). Effect of addition of exogenous enzymes in hypocaloric diet in broiler chicken on performance, biochemical parameters and meat characteristics. Biotechnol. Anim. Husband. 31, 551-565.
Alonso-Alvarez C. and Ferrer M.A. (2001). Biochemical study of fasting, sub-feeding and recovery process in yellow-legged gulls. Physiol. Biochem. Zool. 74, 703-713.
AOAC. (2006). Official Methods of Analysis. 18th Ed. Association of Official Analytical Chemists, Arlington, Washington, DC., USA.
Aquilina G., Azimonti G., Bampidis V., de Lourdes Bastos M., Bories G., Chesson A., Sandro Cocconcelli P., Flachowsky G., Gropp J., Kolar B., Kouba M., López Puente S., López‐Alonso M., Mantovani A., Mayo B., Ramos F., Rychen G., Saarela M., Edoardo Villa R., John Wallace R. and Wester P. (2016). Safety and efficacy of RONOZYME® WX (endo-1,4-betaxylanase) as a feed additive for chickens and turkeys for fattening, minor poultry species for fattening, weaned piglets and pigs for fattening. European Food Safety Author. J. 14, 1-14.
Aquilina G., Bories G., Brantom P., Chesson A., Sandro Cocconcelli P., de Knecht J., Albert Dierick N., Antoni Gralak M., Gropp J., Halle I., Kroker R., Leng L., Lindgren S., Lundebye Haldorsen A.K., Mantovani A., Mézes M., Renshaw D. and Saarela M. (2010a). Scientific Opinion on Ronozyme® P (6-phytase) as feed additive for salmonids. European Food Safety Author. J. 8, 13-27.
Aquilina G., Bories G., Brantom P., Chesson A., Sandro Cocconcelli P., de Knecht J., Albert Dierick N., Antoni Gralak M., Gropp J., Halle I., Kroker R., Leng L., Lindgren S., Lundebye Haldorsen A.K., Mantovani A., Mézes M., Renshaw D. and Saarela M. (2010b). Scientific Opinion on Ronozyme® P (6-phytase) as feed additive for chickens and turkeys for fattening, laying hens, piglets (weaned), pigs for fattening and sows (poultry and pigs). European Food Safety Author. J. 8, 1-12.
Ashie I.N.A., Sorensen T.L. and Nielsen P.M. (2002). Effects of papain and a microbial enzyme on meat proteins and beef tenderness. J. Food Sci. 67, 2138-2142.
Balamurgan R. and Chandrasekaran D. (2010). Effect of multi-enzyme supplementation on weight gain, feed intake, feed efficiency and blood glucose in broiler chicken. Indian J. Sci. Technol. 3, 193-195.
Bano G. (2013). Glucose homeostasis, obesity and diabetes. Best Pract. Res. Clin. Obstet. Gynaecol. 27, 715-726.
Barbut S., Zhang L. and Marcone M. (2005). Effects of pale, normal, and dark chicken breast meat on microstructure, extractable proteins, and cooking of marinated fillets. Poult. Sci. 84(5), 797-802.
Barekatain M.R., Antipatis C., Choct M. and Iji P.A. (2013). Interaction between protease and xylanase in broiler chicken diets containing sorghum distillers’ dried grains with soluble. Anim. Feed Sci. Technol. 182, 71-81.
Bedford M.R. (2000a). Exogenous enzymes in monogastric nutrition-their current value and future benefits. Anim. Feed Sci. Technol. 86, 1-13.
Bedford M.R. (2000b). Removal of antibiotic growth promoters from poultry diets: Implications and strategies to minimize subsequent problems. World’s Poult. Sci. J. 56, 347-365.
Buyse J., Janssens K., Van der Geyten S., Van As P., Decuypere E. and Darras V.M. (2002). Pre- and postprandial changes in plasma hormone and metabolite levels and hepatic deiodinase activities in meal-fed broiler chickens. Br. J. Nutr. 88, 641-653.
Byrne C.E., Troy D.J. and Buckley D.J. (2000). Postmortem changes in muscle electrical properties of bovine m. longissimus dorsi and their relationship to meat quality attributes and pH fall. Meat Sci. 54, 23-34.
Cardoso D.M., Maciel M.P., Passos D.P., Silva F.V., Reis S.T. and Aiura F.S. (2011). Efeito do uso de complexo enzimático em rações para frangos de corte. Arch. Zootec. 60(232), 1053-1064.
Chauhan S.S., Hassen H. and Singh M. (2002). Studies on the effect of phytase enzyme supplementation on blood parameters in broilers. Pp. 294 in 4th Biennial Conf. Anim. Nutr. Assoc., Hisar, India.
Dalólio F.S., Moreira J., Vaz Diego P., Albino L.F.T., Valadares L.R., Pires A.V.P. and Sandra R.F. (2016). Exogenous enzymes in diets for broilers. Rev. Brasileira Saúde Prod. Anim. Salvador. 17, 149-161.
Dalólio F.S., Vaz D.P., Moreira J., Albino L.F.T. and Valadares L.R. (2015). Carcass characteristics of broilers fed enzyme complex. Biotechnol. Anim. Husband. 31, 153-162.
Delezie E., Swennen Q., Buyse J. and Decuypere E. (2007). The effect of feed withdrawal and crating density in transit on metabolism and meat quality of broilers at slaughter weight. Poult. Sci. 86, 1414-1423.
Diebold G., Mosenthin R., Piepho H.P. and Sauer W.C. (2004). Effect of supplementation of xylanase and phospholipase to a wheat-based diet for weanling pigs on nutrient digestibility and concentrations of microbial metabolites in ileal digesta and feces. J. Anim. Sci. 82, 2647-2656.
Dingyuan L., Fengxia Y., Xiaojun Y., Junhu Y., Baojun S. and Zhenfeng Z. (2009). Effects of xylanase on performance, blood parameters, intestinal morphology, microflora and digestive enzyme activities of broilers fed wheat-based diets. Asian-Australasian J. Anim. Sci. 22, 1288-1295.
Engberg R.M., Hedemann M.S., Steenfeldt S. and Jensen B.B. (2004). Influence of whole wheat and xylanase on broiler performance and microbial composition and activity in the digestive tract. Poult. Sci. 83, 925-938.
Esmaeilipour O., Shivazad M., Moravej H., Aminzadeh S., Rezaian M. and Van Krimpen M.M. (2011). Effects of xylanase and citric acid on the performance, nutrient retention, and characteristics of gastrointestinal tract of broilers fed low phosphorus wheat-based diets. Poult. Sci. 90, 1975-1982.
Fatufe A.A., Timmler R. and Rodehutscord M. (2004). Response to lysine intake in composition of body weight gain and efficiency of lysine utilization of growing male chickens from two genotypes. Poult. Sci. 83, 1314-1324.
Foegeding E.A. and Larick D.K. (1986). Tenderization of beef with bacterial collagenase. Meat Sci. 19, 201-214.
Francesch M. and Geraert P.A. (2009). Enzyme complex containing carbohydrases and phytase improves growth performance and bone mineralization of broilers fed reduced nutrient corn-soybean-based diets. Poult. Sci. 88, 1915-1924.
Gajana C.S., Nkukwana T.T., Marume U. and Muchenje V. (2013). Effects of transportation time, distance, stocking density, temperature and lairage time on incidences of pale soft exudative (PSE) and the physico-chemical characteristics of pork. Meat Sci. 95, 520-525.
Gao F., Jiang Y., Zhou G.H. and Han Z.K. (2008). The effects of xylanase supplementation on performance, characteristics of the gastrointestinal tract, blood parameters and gut micro-flora in broilers fed on wheat-based diets. Anim. Feed Sci. Technol. 142, 173-184.
Gaze D.C. (2007). The role of existing and novel cardiac biomarkers for cardio-protection. Curr. Opin. Investig. Drugs. 8, 711-717.
Giraldo L.A., Tejido M.L., Ranilla M.J., Ramos S. and Carro M.D. (2008). Influence of direct-fed fibrolytic enzymes on diet digestibility and ruminal activity in sheep fed grass hay-based diet. J. Anim. Sci. 86, 1617-1623.
Gorsuch V. and Alvarado C.Z. (2010). Postrigor tumble marination strategies for improving color and water holding capacity in normal and pale broiler breast fillets. Poult. Sci. 89, 1002-1008.
Gracia M.I., Aran´ıbar M.J., L´azaro L., Medel P. and Mateos G.G. (2003). Alpha-amylase supplementation of broiler diets based on corn. Poult. Sci. 82, 436-442.
Hajati H. (2010). Effects of enzyme supplementation on performance, carcass characteristics, carcass composition and some blood parameters of broiler chicken. American J. Anim. Vet. Sci. 5, 221-227.
Hajati H., Rezaei M. and Sayyahzadeh H. (2009). The effects of enzyme supplementation on performance, carcass characteristics and some blood parameters of broilers fed on corn-soybean meal-wheat diets. Int. J. Poult. Sci. 8, 1199-1205.
Hana A.H.Z., Mohammad A.R.J. and Majdi A.A.I. (2010). The influence of supplemental multi-enzyme feed additive on the performance, carcass characteristics and meat quality traits of broiler chickens. Int. J. Poult. Sci. 9, 126-133.
Hetland H., Choct M. and Svihus B. (2004). Role of insoluble non-starch polysaccharides in poultry nutrition. World’s Poult. Sci. J. 60, 415-422.
Honikel K.O. and Hamm R. (1994). Measurement of water-holding capacity and juiceness. Pp. 125-161 in Quality Attributes and Their Measurement in Meat, Poultry and Fish Products. A.M. Pearson and T.R. Dutson, Eds. Blackie Academic and Professional, New York, USA.
Horvatovic M.P., Glamocic D., Zikic D. and Hadnadjev T.D. (2015). Performance and some intestinal functions of broilers fed diets with different inclusion levels of sunflower meal and supplemented or not with enzymes. Brazilian J. Poult. Sci. 17(1), 25-30.
Hubner K., Vahjen W. and Simon O. (2002). Bacterial responses to different dietary cereal type and xylanase supplementation in the intestine of broiler chicken. Arch. Anim. Nutr. 56, 167-187.
Jiang Z., Zhou Y., Lu F., Han Z. and Wang T. (2008). Effects of different levels of supplementary alpha-amylase on digestive enzyme activities and pancreatic amylase mRNA expression of young broilers. Asian-australasian J. Anim. Sci. 21, 97-102.
Jozefiak D., Rutkowski A., Kaczmarek S., Jensen B.B., Engberg R.M. and Hojbjerg O. (2010). Effect of β-glucanase and xylanase supplementation of barley- and rye-based diets on caecal microbiota of broiler chickens. British Poult. Sci. 51, 546-557.
Kannan G., Chawan C.B., Kouakou B. and Gelaye B. (2002). Influence of packaging method and storage time on shear value and mechanical strength of intramuscular connective tissue of chevron. J. Anim. Sci. 80, 2383-2389.
Karnish A.R. (2003). Immune Regulation in Health and Disease. Academic Press, San Diego, USA.
Kiarie E., Romero L.F. and Ravindran V. (2014). Growth performance, nutrient utilization, and digesta characteristics in broiler chickens fed corn or wheat diets without or with supplemental xylanase. Poult. Sci. 93, 1186-1196.
Knarreborg A., Engberg R.M., Jensen S.K. and Jensen B.B. (2002). Quantitative determination of bile salt hydrolase activity in bacteria isolated from the small intestine of chickens. Environ. Appl. Microbiol. 68, 6425-6428.
Koc H., Samli A., Okur M., Ozduven H.A. and Senkoylu N. (2010). Effects of Saccharomyses cerevisiae and/or mannan oligosaccharides on performance, blood parameters and intestinal micro-biota of broiler chicks. Bulgarian J. Agric. Sci. 16, 643-650.
Kocher A., Choct M., Ross G., Broz J. and Chung T.K. (2003). Effects of enzyme combinations on apparent metabolizable energy of corn-soybean meal based diets in broilers. J. Appl. Poult. Res. 12, 275-283.
Kwada M., Hirosawa R., Yanai T.M. and Ueda K. (1994). Cardiac lesions in broilers which died without clinical signs. Avian Pathol. 23, 503-511.
Leslie M.A., Moran Jr, E.T. and Bedford M.R. (2007). The effect of phytase and glucanase on the ileal digestible energy of corn and soybean meal fed to broilers. Poult. Sci. 86, 2350-2357.
Lumeij J.T. (1998). A contribution to clinical investigative methods for birds, with special reference to the racing pigeon (Columbial livia domestica). Ph D. Thesis. University of Utrecht, Utrecht, The Netherlands.
Masey O’Neill H.V., Smith J.A. and Bedford M.R. (2014). Multicarbohydrase for non-ruminants. Asian Australasian J. Anim. Sci. 27, 290-301.
Mathlouthi N., Serge M., Luc S., Bernard Q. and Michel L. (2002). Effects of xylanase and -glucanase addition on performance, nutrient digestibility, and physico-chemical conditions in the small intestine contents and caecal micro-flora of broiler chickens fed a wheat and barley-based diet. Anim. Res. 51, 395-406.
Miller A.J., Strange E.D. and Whiting R.C. (1989). Improved tenderness of restructured beef steaks by microbial collagenase derived from Vibrio B-30. J. Food Sci. 54, 855-857.
Mithu D., Robin B., Sarma D.N., Arundhati B. and Amonge T.K. (2017). Growth performance, serum biochemistry and carcass characteristics of broiler birds fed high fibre diet supplemented with exogenous enzyme. Int. J. Chem. Stud. 5, 310-313.
Mohamed I.E., Mosaad A.S., Hany F.E. and El-Sayed R.K. (2014). Growth performance, blood parameters, immune response and carcass traits of broiler chicks fed on graded levels of wheat instead of corn without or with enzyme supplementation. Alexandria J. Vet. Sci. 40, 95-111.
Moharrery A. and Mohammad A.A. (2005). Effect of diet containing different qualities of barley on growth performance serum amylase and intestinal villus morphology. Int. J. Poult. Sci. 4, 549-556.
Muchenje V., Dzama K., Chimonyo M., Raats J.G. and Strydom P.E. (2008). Meat quality of Nguni, Bonsmara and Aberdeen Angus steers raised on natural pasture in the Eastern Cape, South Africa. Meat Sci. 79, 20-28.
Muchenje V., Dzama K., Chimonyo M., Strydom P.E., Hugo A. and Raats J.G. (2009). Some biochemical aspects pertaining to beef eating quality and consumer health: A review. Food Chem. 112, 279-289.
Muhammed N.O., Adeyina A.O. and Peters O.M. (2000). Nutritional evaluation of fungi treated cocoa bean shell. Nigerian J. Pure Appl. Sci. 5, 1059-1064.
Muir P.D., Wallace G.J., Dobbie P.M. and Bown M.D. (2000). A comparison of animal performance and carcass and meat quality characteristics in Hereford, Hereford x Friesian, and Friesian steers grazed together at pasture. New Zealand J. Agric. Res. 43, 193-205.
Munyaka P.M., Nandha N.K., Kiarie E., Nyachoti C.M. and Khafipour E. (2016). Impact of combined β-glucanase and xylanase enzymes on growth performance, nutrients utilization and gut microbiota in broiler chickens fed corn or wheat-based diets. Poult. Sci. 95, 528-540.
Nadeem M.A., Anjum M.I., Khan A.G. and Azim A. (2005). Effect of dietary supplementation of non-starch polysaccharide degrading enzyme on growth performance of broiler chicks. Pakistan Vet. J. 25, 183-188.
Neves D.P., Banhazi T.M. and Nääs I.A. (2014). Feeding behaviour of broiler chickens: a review on the biochemical characteristics. Rev. Brasileira de Ciên. Avíc. 16, 1-16.
Nian F., Guo Y.M., Ru Y.J., Peron A. and Li F.D. (2011). Effect of xylanase supplementation on the net energy for production, performance and gut micro-flora of broilers fed corn/soy-based diet. Asian-Australasian J. Anim. Sci. 24, 1282-1287.
NRC. (1994). Nutrient Requirements of Poultry, 9th Rev. Ed. National Academy Press, Washington, DC., USA.
Obikaonu H.O., Okoli I.C., Opara M.N., Okoro V.M.O., Ogbuewu I.P., Etuk E.B. and Udedibie A.B.I. (2012). Haematological and serum biochemical indices of starter broilers fed leaf meal of neem (Azadirachta indica). J. Agric. Technol. 8, 71-79.
Ogunsipe M.H., Agbede J.O. and Adedeji O.A. (2014). Performance response, carcass evaluation and economic benefit of rabbits fed sorghum offal-based diets. African J. Food Agric. Nutr. Dev. 14, 8585-8601.
Oloruntola O.D., Ayodele S.O., Agbede J.O. and Oloruntola D.A. (2016). Effect of feeding broiler chickens with diets containing Alchornea cordifolia leaf meal and enzyme supplementation. Archiv. Zootec. 65, 489-498.
Olukosi O.A., Cowieson A.J. and Adeola O. (2007). Age-related influence of a cocktail of xylanase, amylase and protease or phytase individually or in combination in broilers. Poult. Sci. 86, 77-86.
Omojola A.B., Otunla T.A., Olusola O.O., Adebiyi O.A. and Ologhobo A.D. (2014). Performance and carcass characteristics of broiler chicken fed soybean and sesame/soybean based diets supplemented with or without microbial phytase. American J. Exp. Agric. 4, 1637-1648.
Opalinski M., Maiorka A., Cunha F., Silva E.C.M. and Borges S.A. (2006). Adição de níveis crescentes de complexo enzimático em rações com soja integral desativada para frangos de corte. Arch. Vet. Sci. 11, 31-35.
Owoyele B.V., Adebayo J.O., Muhammad N.O. and Ebunlomo A.O. (2003). Effect of different processing techniques of turban meal on some hematological indices in rats. Nigerian J. Pure App. Sci. 18, 1340-1345.
Oyeagu C.E., Ugwuanyi C.L., Onwujiariri E., Osita C.O., Akuru E.A., Ani A.O., Idamokoro M.E and Falowo A.B. (2019a). Blood bio-markers, growth traits, carcass characteristics and income over feed cost of broiler birds fed enzyme fortified brewer’s dried grain. Pakistan J. Nutr. 18(9), 834-844.
Oyeagu C.E., Mlambo V. and Muchenje V. (2019b). Effect of dietary Aspergillus xylanase on nutrient digestibility and utilization performance and size of internal organs in broiler chickens offered maize-soybean meal based-diets. Pakistan J. Nutr. 18(9), 852-865.
Oyeagu C.E., Ani A.O., Egbu C.F., Akpolu E.S., Iwuchukwu J.C. and Omumuabuike J.N. (2015). Performance of broiler finisher birds fed toasted bambara nut (Vigna subterranean verdc) offal with supplementary enzyme. Asian J. Sci. Technol. 6, 934-939.
Oyeagu C.E., Ani A.O., Egbu C.F., Udeh F.U., Omumuabuike J.N. and Iwuchukwu, J.C. (2016). The effect of feeding toasted bambara nut (Vigna subterranean verdc) offal and supplementary enzyme on performance of broiler chicks. J. Trop. Agric. 93, 271-283.
Pattaniak J.R., Das S.K., Mishra S.K., Panda N., Pati P.K. and Dehuri P.K. (2011). Effect of fiber degrading multi-enzyme on the performance of commercial broiler. Indian. J Anim. Sci. 81, 1052-1059.
Peter M.L. and Susan C.E.F. (1991). Interpretation of laboratory results. Australian Vet. Practit. 21, 100-108.
Petracci M. and Baéza E. (2009). Harmonization of methodology of assessment of poultry meat quality features. Working paper of WPSA Working Group 5 Poultry Meat July.
Petracci M. and Baéza E. (2011). Harmonization of methodologies for the assessment of poultry meat quality features. World`s Poult. Sci. J. 67, 137-151.
Rizz C., Marangon A. and Chiericat G.M. (2007). Effect of genotype on slaughtering performance and meat physical and sensory characteristics of organic laying chicken. Poult. Sci. 86, 128-135.
Rodriguez M.L., Rebol´e A., Velasco S., Ortiz L.T., Trevino J. and Alzueta C. (2012). Wheat- and barley-based diets with or without additives influence broiler chicken performance, nutrient digestibility and intestinal microflora. J. Sci. Food Agric. 92, 184-190.
Sanka Y.D. and Mbaga S.H. (2014). Evaluation of Tanzanian local chicken reared under intensive and semi-intensive systems: II. Meat quality attributes. Livest. Res. Rural Dev. Available at: http://www.lrrd.org/lrrd26/9/sank26156. html.
SAS Institute. (2010). SAS®/STAT Software, Release 9.4. SAS Institute, Inc., Cary, NC. USA.
Sayehban P., Seidavi A., Dadashbeiki M., Ghorbani A., Araújo W.A.G. and Albino L.F.T. (2015). Effects of different dietary levels of two types of olive pulp and exogenous enzyme supplementation on the gastro-intestinal tract size, immunology and hematology of broilers. Brazilian J. Poult. Sci. 17, 73-85.
Sayehban P., Seidavi A., Dadashbeiki M., Ghorbani A., Araújo W.A.G. and Albino L.F.T. (2016). Effects of different levels of two types of olive pulp with or without exogenous enzyme supplementation on broiler performance and economic parameters. Brazilian J. Poult. Sci. 18(3), 489-499.
Selle P.H., Cadogan D.J., Ru Y.J. and Partridge G.G. (2010). Impact of exogenous enzymes in Sorghum or wheat based broiler diets on nutrient utilization and growth performance. Int. J. Poult. Sci. 9(1), 53-58.
Shakouri M.D., Iji P.A., Mikkelsen L.L. and Cowieson A.J. (2008). Intestinal function and gut microflora of broiler chickens as influenced by cereal grains and microbial enzyme supplementation. J. Anim. Physiol. Anim. Nutr. 93, 647-658.
Shouqing M., Meilei M., Chunlong M., Kaifan Y. and Weiyun Z. (2015). Comparisons of blood biochemical parameters, digestive enzyme activities and volatile fatty acid profile between Meishan and Yorkshire piglets. J. Anim. Nutr. 1, 289-292.
Singh A., Masey O’Neill H.V., Ghosh T.K., Bedford M.R. and Haldar S. (2012). Effects of xylanase supplementation on performance, total volatile fatty acids and selected bacterial population in caeca, metabolic indices and peptide YY concentrations in serum of broiler chickens fed energy restricted maize-soybean based diets. Anim. Feed Sci. Technol. 177, 194-203.
Stanford K., Aalhus J.L., Dugan M.E.R., Wallins G.L., Sharma R. and McAllister T.A. (2003). Effects of feeding transgenic canola on apparent digestibility, growth performance and carcass characteristics of lambs. Canadian J. Anim. Sci. 83, 299-305.
Steel R.G.D. and Torrie J.H. (1980). Principles and Procedures of Atatistics. A Biometric Approach. McGraw-Hill Publishers, New York.
Stefanello C., Vieira S.L., Santiago G.O., Kindlein L., Sorbara J.O.B. and Cowieson A.J. (2015). Starch digestibility, energy utilization, and growth performance of broilers fed corn-soybean basal diets supplemented with enzymes. Poult. Sci. 94, 2472-2479.
Stern N.J., Svetoch E.A., Eruslanov B.V., Perelygin V.V., Mitsevich E.V., Mitsevich I.P., Pokhilenko V., Levchuk V.P., Svetoch O.E. and Seal B.S. (2006). Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system. Antimicrob. Agents Chemother. 50, 3111-3116.
Strydom P.E., Naude R.T., Smith M.F., Scholtz M.M. and van Wyk J.B. (2000). Characterization of indigenous African cattle breeds in relation to meat quality traits. Meat Sci. 55, 79-88.
Sugiharto S. (2016). Role of nutraceuticals in gut health and growth performance of poultry. J. Saudi Soc. Agric. Sci. 15, 99-111.
Swennen Q., Janssens G.P.J., Millet S., Vansant G., Decuypere E. and Buyse J. (2005). Effects of substitution between fat and protein on food intake and its regulatory mechanisms in broiler chickens: Endocrine functioning and intermediary metabolism. Poult. Sci. 84, 1051-1057.
Tabook N.M., Kadim I.T., Mahgoub O. and Al-Marzooqi W. (2006). The effect of date fibre supplemented with an exogenous enzyme on the performance and meat quality of broiler chickens. British Poult. Sci. 47, 73-82.
Torok V.A., Kathy O., Maylene L. and Robert J.H. (2008). Application of methods for identifying broiler chicken gut bacterial species linked with increased energy metabolism. Appl. Environ. Microbio. 74, 783-791.
Tuohy K.M., Ziemer C.J., Klinder A., Knobel Y., Pool-Zobel B.L. and Gibson G.R. (2002). A human volunteer study to determine the prebiotic effects of lactulose powder on human colonic micro-biota. Microbio. Ecol. Health Dis. 14, 165-173.
Vestergaard M., Therkildsen M., Henckel P., Jensen L.R., Andersen H.R. and Sejrsen K. (2000). Influence of feeding intensity, grazing and finishing feeding on meat and eating quality of young bulls and the relationship between muscle fibre characteristics, fibre fragmentation and meat tenderness. Meat Sci. 54, 187-195.
Wang Z.R., Qiao S.Y., Lu W.Q. and Li D.F. (2005). Effects of enzyme supplementation on performance, nutrient digestibility, gastrointestinal morphology, and volatile fatty acid profiles in the hindgut of broilers fed wheat-based diets. Poult. Sci. 84, 875-881.
Werner C., Janisch S., Kuembet U. and Wicke M. (2009). Comparative study of the quality of broiler and turkey meat. British Poult. Sci. 50, 318-324.
Wilfarta A., Montagne L., Simmins H., Noblet J. and van Milgen H. (2007). Digesta transit in different segments of the gastrointestinal tract of pigs as affected by insoluble fibre supplied by wheat bran. British J. Nutr. 98(1), 54-62.
Williams M.P., Klein J.T., Wyatt C.L., York T.W. and Lee J.T. (2014). Evaluation of xylanase in low-energy broiler diets. J. Appl. Poult. Res. 23, 188-195.
Zdunczyk Z., Jankowski J., Juskiewicz J., Lecewicz J. and Slominski B. (2009). Application of soybean meal, soy protein concentrate and isolate differing in α-galactosides content to low- and high-fibre diets in growing turkeys. J. Anim. Physiol. Anim. Nutr. 85, 1-10.
Zhang L., Xu J., Lei L., Jiang Y., Gao F. and Zhou G.H. (2014). Effects of xylanase supplementation on growth performance, nutrient digestibility and non-starch polysaccharide degradation in different sections of the gastrointestinal tract of broilers Fed wheat-based diets. Asian-Australasian J. Anim. Sci. 27, 855-861.