Microsatillate based Parentage Verification in Crossbred Sheep Herds
الموضوعات :ک. کسرایی 1 , س.ع. رافت 2 , آ. جوانمرد 3 , ج. شجاع 4 , م. عبدالسعید 5 , م. خان سفید 6
1 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
2 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
3 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
4 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
5 - Department of Animal Bioscience, Faculty of Veterinary Science, University of Sydney, Sydney, Australia
6 - Department of Environment and Primary Industries, AgriBio, Ring Road, Bundoora, VIC, 3083, Australia
الکلمات المفتاحية: Sheep, Microsatellite, parentage control, pedigree errors,
ملخص المقالة :
Parentage testing is an important tool in farm animals for genetically determining the accuracy of pedigree information. The objective of the current study was to implication of multiplexing 14 microsatellite markers for routine parentage testings. The twenty-four lambs were crossbred of Ghazel × Baluchi, Ghazel × Baluchi × Merinos, and Baluchi × Moghani × Merinos breeds. The genomic DNA was extracted from the whole blood samples and genotyped using fragment analysis method. The highest and the reproducible multiplex group appeared by grouping ILSTS0049, MCM512, BMC1009, BM148 and CSSM032 loci in 5-plex reaction. The markers were first evaluated based on the number of alleles, allelic frequency, polymorphism information content (PIC), expected heterozygosity (HE), observed heterozygosity (HO) and the individual exclusion probability using popgene and cervus software. The average heterozygosity, polymorphism index content (PIC) and number of alleles per loci were 0.60, 0.58 and 4.93, respectively. The total exclusion probability of 14 microsatellite loci was 0.9999 in the population by compatibility according to the Mendelian fashion. The pedigree was considered incorrect in one out of all the evaluated progeny, as the genotype of that progeny did not match to any of its parents. The results of our study suggest the multiplex microsatellite panel a fast, robust, reliable, and economically efficient tool to verify the parentage and hence it can be used in the routine parentage testing in sheep.
Banos G., Wiggans G.R. and Powell R.L. (2001). Impact of paternity errors in cow identification on genetic evaluations and international comparisons. J. Dairy Sci. 84, 2523-2529.
Barnett N., Purvis I., Van Hest B. and Franklin I. (1999). The accuracy of current dam pedigree recording strategies employed by stud Merino breeders. Proc. Adv. Anim. Breed. Gen. 13, 373-376.
Baron E.E., Martinez M.L., Ver neque R.S. and CoutinhoL.L. (2002). Parentage testing and effect of misidentification on the estimation of breeding value in Gir cattle. Genet. Mol. Biol. 25(4), 389-394.
Carolino I., Sousa C.O., Ferreira S., Carolino N., Silva F.S. and Gama L.T. (2009). Implementation of a parentage control system in Portuguese beef cattle with a panel of microsatellite markers. Genet. Mol. Biol. 32(2), 306-311.
Cervini M., Henrique-Silva F., Mortari N. and Matheucci E.J. (2006). Genetic variability of 10 microsatellite markers in the characterization of Brazilian Nellore cattle (Bos indicus). Genet. Mol. Biol. 29, 486-490.
Crawford A.M. and Buchanan F. (1993). Ovine microsatellites at the OarFCB11, OarFCB128, OarFCB193, OarFCB266 and OarFCB304 loci. Anim. Genet. 24, 145.
DeNise S.E., Johnston J., Halverson K., Edwards J., Marshall K., Rosenfeld D., McKenna S. and Sharp T. (2004). Power of exclusion for parentage verification and probability of match for identity in American kennel club breeds using 17 canine microsatellite markers. Anim. Genet. 35, 14-17.
Dodds K.G., Tate M.L. and Sise J.A. (2007). Genetic evaluation using parentage information from genetic markers. J. Anim. Sci. 83, 2271-2279.
Dodds K.G., Tate M.L., McEwan J.C. and Crawford A.M. (2005). Exclusion probabilities for pedigree testing farm animals. Theor. Appl. Genet. 92, 966-975.
FAO. (2004). Secondary Guidelines for Development of National Farm Animal Genetic Resources Management Plans. Measurement of Domestic Animal Diversity (MoDAD): Recommended microsatellite markers initiative for domestic animal diversity. FAO, Rome, Italy.
Geldermann H., Pieper U. and Weber W.E. (1986). Effect of misidentification on the estimation of breeding value and heretability in cattle. J. Anim. Sci. 63, 1759-1768.
Glowatzki-Mullis M.L., Gaillard C., Wigger G. and Fries R. (1995). Microsatellite-based parentage control in cattle. Anim. Genet. 26, 7-12.
Goldstein D.B., Linares A.R., Cavallil-Sforza L.L. and Feldman M.V. (1995). Genetic absolute dating based on microsatellites and the origin of modern humans. Proc. Natl. Acad. Sci. USA. 92, 11549-11552.
Heyen D.W., Beever J.E., Da Y., Evert R.E., Green C., Bates S.R.E., Ziegle J.S. and Lewin H.A. (1997). Exclusion probabilities of 22 bovine microsatellite markers in fluorescent multiplexes for semi-automated parentage testing. Anim. Genet. 28, 21-27.
Jakabova D., Trandzik J. and Chrastina J. (2002). Effectiveness of six highly polymorphic microsatellite markers in resolving paternity cases in Thoroughbred horses in Slovakia. Czech J. Anim. Sci. 47, 497-501.
Jakhesara S.J., Rank D.N., Kansara J.D., Parikh R.C., Patel V.M., Vataliya P.H. and Solanki J.V. (2012). Parentage verification in field progeny testing program of Mehsana buffalo. J. Anim. Sci. Dec. 90(13), 4723-4728.
Kios D., Estè van Marle K. and Carina V. (2012). Application of DNA markers in parentage verification of Boran cattle in Kenya. Trop. Anim. Health Prod. 44, 471-476.
Leroy G., Danchin-Burge C., Palhiere I., Baumung R. and Fritz S. (2011). An ABC estimate of pedigree error rates: application in dog, sheep and cattle breeds. Anim. Genet. 43, 309-314.
Lipinski M.J., Amigues Y., Blasi M., Broad T.E., Cherbonnel C., Cho G.J., Corley S., Daftari P., Delattre Luikart G., Biju-Duval M.P., Ertugrul Y., Zagdsuren C., Maudet C. and Taberlet P. (1999). Power of 22 microsatellite markers in fluorescent multi- plexes for parentage testing in goats (Capra hircus). Anim. Genet. 30, 431-438.
Marklund S., Ellegren H., Eriksson S., Sandberg K. and Andersson L. (1994). Parentage testing and linkage analysis in the horse using a set of highly polymorphic microsatellites. Anim. Genet. 25, 19-23.
Marshall T.C., Slate J., Kruuk L.E.B. and Pemberton J.M. (1998). Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7, 639-655.
Parlato E. and Van Vleck L.D. (2012). Effect of parentage misidentification on estimates of genetic parameters for milk yield in the Mediterranean Italian buffalo population. J. Dairy Sci. 95, 4059-4064.
Pollak E.J. (2005). Application and impact of new genetic technologies on beef cattle breeding: a “real world” perspective. Australian J. Exp. Agric. 45, 739-748.
Přibyl J., Šafus P., Štípková M., Stádník L. and Čermák V. (2004). Selection index for bulls of Holstein cattle in the Czech Republic. Czech J. Anim. Sci. 49, 244-256.
Rosa A.J.M., Sardinae M.T., Mastrangelo S., Tolone M. and Portolano B. (2013). Parentage verification of Valle del Belice dairy sheep using multiplex microsatellite panel. Small Rumin. Res. 113(1), 62-65.
Saberivand A., Javanmard A. and Safdari M. (2011). Parentage verification and identity test of Ghezel sheep using microsatillate markers. African J. Biotechnol. 10(31), 5815-5819.
Sherman G.B., Kachman S.D., Hungerford L.L., Rupp G.P., Fox C.P., Brown B., Feuz M. and Holm T.R. (2004). Impact of candidate sire number and sire relatedness on DNA polymorphism-based measures of exclusion probability and probability of unambiguous parentage. Anim. Genet. 35, 220-226.
Siwek M. and Knol E.F. (2010). Parental reconstruction in rural goat population with microsatellite markers. Italian J. Anim. Sci. 9(3), 500-512.
Souza C.A., Paiva S.R., McManus C.M., Azevedo H.C. and Mariante A.S. (2012). Genetic diversity and assessment of 23 microsatellite markers for parentage testing of Santa Inês hair sheep in Brazil. Genet. Mol. Res. 11(2), 1217-1229.
Stewart S.D., Wickramasinghe A., Dorrance E. and Robertsonc A.E. (2011). Comparison of three microsatellite analysis methods for detecting genetic diversity in Phytophthora sojae (Stramenopila:Oomycete). Biotechnol. Lett. 33(11), 2217-2223.
Tozaki T. (2001a). Characterization of equine microsatellites and repetitive elements, and validation of paternity testing for Thoroughbreds. Ph D. Thesis. Showa Univ., Japan.
Usha A.P., Simpson S.P. and Williams J.L. (1994). Evaluation of microsatellite markers for parentage verification. Pp. 41 in Proc. 24th Conf. Int. Soc. Anim. Genet. Prague, Czech.
Van Eenennaam A.L., Weaber R.L., Drake D.J., Penedo M.C.T., Quaas R.L., Garrick D.J. and Pollak E.J. (2007). DNA-based paternity analysis and genetic evaluation in a large, commercial cattle ranch setting. J. Anim. Sci. 85, 3159-3169.
Van Vleck L.D. (1970b). Misidentification and sire evaluation. J. Dairy Sci. 53, 1697-1702.
Visscher P.M., Woolliams J.A., Smith D. and Williams J.L. (2002). Estimation of pedigree errors in the UK dairy population using microsatellite markers and the impact on selection. J. Dairy Sci. 85, 2368-2375.
Wang X., Rinehart T.A., Wadl P.A., Spiers J.M., Hadziabdic D., Windham M.T. and Trigiano R.N. (2009). A new electrophoresis technique to separate microsatellite allele. African J. Biotechnol. 8(11), 200-208.
Weller J.I., Feldmesser E., Golik M., Tager-Cohen I., Domochovsky R., Alus O., Ezra E. and Ron M. (2004). Factors affecting incorrect paternity assignment in the Israeli Holstein population. J. Dairy Sci. 87, 2627-2640.
Yeh F.C., Boyle T. and Yang R.C. (1999). POPGENE Ver. 3.31. Microsoft Window-based freeware for population genetic analysis. University of Alberta, Edmonton, Canada.
Zhang Y.W., Sun D., Yu Y. and Zhang Y. (2010). Validation of 17 microsatellite markers for parentage verification and identity test in Chinese Holstein cattle. Asian-Australasian J. Anim. Sci. 23(4), 425-429.