Possibility of Early Detection of Bovine Mastitis in Dairy Cows Using Thermal Images Processing
الموضوعات :م.ر. گلزاریان 1 , ح. سلطانعلی 2 , ا. دوستی ایرانی 3 , س.ه. ابراهیمی 4
1 - Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 - Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 - Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
4 - Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
الکلمات المفتاحية: somatic cell count, animal health, bovine mastitis, California mastitis test, thermal image,
ملخص المقالة :
Bovine mastitis (BM) is a prevalent condition on dairy farms, affecting both livestock health and reducing profitability. This study investigated the feasibility of diagnosing BM in Holstein dairy cattle using thermography. To increase the detection between healthy cattle and unhealthy one and to better compare the results from thermal images, a number of parameters including somatic cell count (SCC) and California mastitis test (CMT) were adopted. The result of non-parametric Spearman's Rho test showed that there was aninverse correlation (R=-0.97) between SSC factor and milk production records. Bovine Mastitis diagnosis results obtained from processing thermal images showed that the average temperature difference between unhealthy and healthy tissues was 0.44 ˚C. The detection accuracy of this method was 57.3%. The results from processing the thermal images showed that the thermal imaging camera was able to detect small temperature difference on the skin sometimes due to the effects of factors, such as non-uniform light irradiation and the presence or absence of hair or skin lesions on udder surface, which are not necessarily the studied factors. Therefore, it is suggested that parameters such as udder’s touching to groin, hair on udder, reduced light effect and skin lesions in order to improve the precision in the thermographic diagnosis of BM also be controlled future studies.
Alejandro M., Romero G., Sabater J.M. and Díaz J.R. (2014). Infrared thermography as a tool to determine teat tissue changes caused by machine milking in Murciano-Granadina goats. Livest. Sci. 160, 178-185.
Alsaaod M., Syring C., Dietrich J., Doherr M.G., Gujan T. and Steiner A.A. (2014). A field trial of infrared thermography as a non-invasive diagnostic tool for early detection of digital dermatitis in dairy cows. Vet. J. 199, 281-285.
Ayareh D. and Mirzaei A.S. (2014). Effective factors on milk somatic cell count in clinical mastitis. J. Vet. Res. 69(2), 127-132.
Barth K. (2000). Basic investigations to evaluate a highly sensitive infrared-thermograph-technique to detect udder inflammation in cows. J. Milchwiss. 55(11), 607-609.
Bolourchi M., Hovareshti P. and Tabatabayi A.H. (2006). Comparison of the effects of local and systemic dry cow therapy for staphylococcal mastitis. Prev. Vet. Med. 25, 63-67.
Colak A., Polat B., Okumus Z., Kaya M., Yanmaz L.E. and Hayirli A. (2008). Early detection of mastitis using infrared thermography in dairy cows. J. Dairy Sci. 91, 4244-4248.
Cruz Júnior C.A., Lucci C.M., Peripolli V., Silva A.F., Menezes A.M., Morais S.R.L., Araújo M.S., Ribeiro L.M.C.S., Mattos R.C. and McManus C. (2015). Effects of testicle insulation on seminal traits in rams: preliminary study. Small Rumin. Res. 130, 157-165.
Davis J.G., Jones V.E. and Ward S.J. (1943). Rapid electrical methods for the measurements of souring and mastitis milk. Pp. 43-46 in Proc. Soc. Agric. Bact. Leeds, United Kingdom.
Doosti-Irani O., Golzarian M.R., Aghkhani M.H., Sadrnia H. and Doosti-Irani M. (2016). Development of multiple regression model to estimate the apple’s bruise depth using thermal maps. Posth. Biol. Technol. 116, 75-79.
Ferrero F.J., Valledor M. and Campo J.C. (2014). Screening method for early detection of mastitis in cows. Measurment. 47, 855-860.
Ghasemzadeh-Nava H. and Bokaie S. (2011). Evaluation of MAS-D-TEC set for detection of subclinical mastitis in goats. Iranian Vet. J. 7(3), 27-34.
Ghorbanpour M., Seifiabad-Shapouri M.R., Motamedi H., Jamshidianand M. and Gouraninejad S. (2007). Comparison of microbial culture methods, PCR and California mastitis test for the detection of staphylococcal and streptococcal subclinical staphylococcal mastitis. Iranian Vet. J. 3(1), 11-17.
Guccione J. (2013). Clinical and diagnostically aspects in dairy Mediterranean buffalo mastitis. Ph D. Thesis. University of Napoli Federico, Napoli, Italy.
Heringstad B., Klemetsdal G. and Ruane J. (2000). Selection for mastitis resistance in dairy cattle: a review with focus on the situation in the Nordic countries. Livest. Prod. Sci. 4, 95-106.
Hovinen M., Siivonen J., Taponen S., Hänninen L., Pastell M., Aisla A.M. and Pyörälä S. (2008). Detection of clinical mastitis with the help of a thermal camera. J. Dairy Sci. 91, 4592-4598.
Kamphuis C., Mollenhorst H., Feelders A., Pietersma D. and Hogeveen H. (2010). Decision-tree induction to detect clinical mastitis with automatic milking. Comput. Elect. Agric. 70(1), 60-68.
Kennedy A. (2004). Mastitis detection using infrared thermography. Western Dairy Digest. 5(4), 15.
Martins R.F.S., do Prado Paim T., de Abreu Cardoso C., Stéfano Lima Dallago B., de Melo C.B., Louvandini H. and McManus C. (2013). Mastitis detection in sheep by infrared thermography. Res. Vet. Sci. 94, 722-724.
McManus C., Tanure C.B., Peripolli V., Seixas L., Fischer L., Gabbi A.M., Silvio R.O., Menegassi S.R., Stumpf M.T., Kolling G.J. and Dias Eduardo Costa Jr J.B.G. (2016). Infrared thermography in animal production: An overview. Comput. Elect. Agric. 123, 10-16.
Menegassi S.R.O., Barcellos J.O.J., Dias E.A., Koetz C., Pereira G.R., Peripolli V., Mcmanu C., Canozzi M.E.A. and Lopes F.G. (2015). Scrotal infrared digital thermography as a predictor of seasonal effects on sperm traits in Braford bulls. Int. J. Biometeorol. 59(3), 357-364.
Najafi M. and Mortazavi S.A. (2009). Effect of somatic cell count on milk composition in Khorasan Razavi province. J. Food Sci. Technol. 6(2), 24-32.
Nikkhah A., Plaizier J.C., Einarson M.S., Berry R.J., Scott S.L. and Kennedy A.D. (2005). Infrared thermography and visual examination of hooves of dairy cows in two stages of lactation. J. Dairy Sci. 88, 2749-53.
Norberg E. (2005). Electrical conductivity of milk as a phenotypic and genetic indicator of bovine mastitis: a review. Livest. Prod. Sci. 96, 129-139.
Paim T.P., Borges B.O. and Lima P.M.T. (2012). Relation between thermographic temperatures of lambs and thermal comfort indices. Int. J. Appl. Anim. Sci. 1(4), 108-115.
Poikalainen V., Veermäe J.P. and Kokin E. (2012). Infrared temperature patterns of cow’s body as an indicator for health control at precision cattle farming. Agric. Res. Biol. Engin. 1, 187-194.
Polat B., Colak B., Cengiz M., Yanmaz L.E., Bastan A., Kaya S. and Hayirl A. (2010). Sensitivity and specificity of infrared thermography in detection of subclinical mastitis in dairy cows. J. Dairy Sci. 93(8), 3525-3532.
Porcionato M.A.F., Canata T.F., Deoliviera C.L. and Dossattos M.V. (2009). Udder thermography of gyr cows for subclinical mastitis detection. Biol. Engin. Camp. 3(3), 251-257.
Quinn P.J., Carter M.E., Markey B. and Carter G.R. (1994). Clinical Veterinary Microbiology. WolfePublishing,London, United Kingdom.
Schaefer A.L., Cook N.J., Bench C., Chabot J.B., Colyn J., Liu T., Okine E.K., Stewart M. and Webster J.R. (2012). The non-invasive and automated detection of bovine respiratory disease onset in receiver calves using infrared thermography. Res. Vet. Sci. 93, 928-935.
Simões V.G., Lyazrhi F., Picard-Hagen N., Gayrard V., Martineau G.P. and Waret- Szkuta A. (2014). Variations in the vulvar temperature of sows during proestrus and estrus as determined by infrared thermography and its relation to ovulation. Theriogenology. 82(8), 1080-1085.
Stelletta C., Gianesella M., Vencato J., Fiore E. and Morgante M. (2012). Thermographic applications in veterinary medicine. Pp 117-140 in Infrared Thermography. R.V. Prakash, Ed. In Tech Open Access Publisher, China.
Viguier C., Arora S., Gilmartin N., Welbeck K. and O’Kennedy R. (2009). Mastitis detection: current trends and future perspectives. Trends Biotechnol. 27, 486-493.
Weschenfelder A.V., Saucier L., Maldague X., Rocha L.M., Schaefer A.L. and Faucitano L. (2013). Use of infrared ocular thermography to assess physiological conditions of pigs prior to slaughter and predict pork quality variation. Meat Sci. 95, 616-620.
Windig J.J., Calus M.P.L. and Veerkamp R.F. (2005). Influence of herd environment on health and fertility and their relationship with milk production. J. Dairy Sci. 88(1), 335-347.