An Evolutionary and Phylogenetic Study of the BMP15 Gene
الموضوعات :
1 - Department of Animal Science, Faculty of Agriculture, University of Zabol, Zabol, Iran|Razi Vaccine and Serum Research Institute, Karaj, Iran
2 - دانشگاه زابل
الکلمات المفتاحية: transition, phylogenetic, transversion, <i>BMP15</i>,
ملخص المقالة :
DNA sequence data contains a wealth of biologically useful information. Recent innovations in DNA sequencing technology have greatly increased our capacity to determine massive amounts of nucleotide sequences. These sequences can be used to specify the characteristics of different regions, interpret the evolutionary relationships between categorized groups, likelihood of performing multiple comparisons between an unidentified sequence and millions of specified sequences existing in DNA information gene banks. This study focuses on bioinformatics analysis of molecular genetic variation of the BMP15 gene of some selected mammalian species with a view to providing relevant genetic information for breeding and selection programs in the studied species using computational methods. A total of twenty-three BMP15 nucleotide sequences and amino acids sequences were retrieved from the NCBI gene bank. Sequence alignment, pair and multi-alignment comparison of the BMP15 gene of the various species were done with MEGA6. High degree of polymorphism of the BMP15 gene was observed among the studied species. Despite high polymorphism in BMP15 similarity between sequences was greater than 98% and differences existing in fertility rates among species may be species-specific due to differences in the processing of BMP15. The mean diversity among populations and the scattering coefficient of evolution in the BMP15 position were calculated to be 2.15 and 1.25 bp, respectively and the mean divergence was calculated to be 1.7 bp. Also, the mean divergence within the species was 4.1, 0.4 and 2.1 bp in sheep, cows and goats, respectively. Bases substitution rate and pattern in BMP15 showed that cows and goats have the minimum genetic distance and human has the maximum genetic distance with sheep. In addition to existing variation in DNA and amino acids sequences between BMP15 in different species, this study highlighted specific segments significantly more conserved in BMP15 from mono-ovulating as compared to super-ovulating species.
Auclair S., Rossetti R., Meslin C., Monestier O., Di Pasquale E., Pascal G., Persani L. and Fabre S. (2013). Positive selection in bone morphogenetic protein 15 targets a natural mutation associated with primary ovarian insufficiency inhuman. PLoS One. 8, e78199.
Bibinu B.S., Yakubu A., Ugbo S.B. and Dim N.I. (2016). Computational molecular analysis of the sequences of BMP15 gene of ruminants and non-ruminants. Open J. Genet. 6, 39-50.
Brankin V., Quinn R.L., McGarr C., Webb R. and Hunter M.G. (2003). BMPs 2, 6 and 15 are regulators of porcine granulosa cell function in vitro. Reprod. Abstr. Ser. 30, 94.
Brankin V., Quinn R.L., McGarr C., Webb R. and Hunter M.G. (2004). The function of co-cultured porcine granulosa and theca cells is modulated by BMPs 2, 6 and 15 in conjunction with oocytes in a serum free system. Reprod. Abstr. Ser. 31, 35.
Demars J., Fabre S., Sarry J., Rossetti R., Gilbert H., Luca P., Gwenola T., Mulsant P., Nowak Z., Drobik W., Martyniuk E. and Bodin L. (2013). Genome-wide association studies identify two novel BMP15 mutations responsible for an atypical hyperprolificacy phenotype in sheep. PLoS Genet. 9(4), e1003482.
Di Pasquale E., Beck-Peccoz P. and Persani L. (2004). Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. Am. J. Hum. Genet. 75, 106-111.
Di Pasquale E., Rossetti R., Marozzi A., Bodega B., Borgato S., Cavallo L., Einaudi S., Radetti G., Russo G., Sacco M., Wasniewska M., Cole T., Beck-Peccoz P., Nelson L.M. and Persani L. (2006). Identification of new variants of human BMP15 gene in a large cohort of women with premature ovarian failure. J. Clin. Endocrinol. Metab. 91, 1976-1979.
Dixit H., Rao L.K., Padmalatha V.V., Kanakavalli M., Deenadayal M., Gupta N., Chakrabarty B. and Singh L. (2006). Missense mutations in the BMP15 gene are associated with ovarian failure. Hum. Genet. 119, 408-415.
Drouilhet L., Mansanet C., Sarry J., Tabet K., Bardou P., Woloszyn F., Harichaux G., Monniaux D., Bodin L., Philippe M. and Fabre S. (2013). The highly prolific phenotype of Lacaune Sheep is associated with an ectopic expression of the B4GALNT2 gene within the ovary. PLoS Genet. 9(9), e1003809.
Dube J.L., Wang P., Elvin J., Lyons K.M., Celeste A.J. and Matzuk M.M. (1998). The bone morphogenetic protein 15 gene is x-linked and expressed in oocytes. Mol. Endocrinol. 12, 1809-1817.
Fabre S., Pierre A., Mulsant P., Bodin L., DiPasquale E., Persani L., Monget P. and Monniaux D. (2006). Regulation of ovulation rate in mammals: contribution of sheep genetic models. Reprod. Biol. Endocrinol. 4, 20-25.
Galloway S.M., Gregan S.M., Wilson T., McNatty K.P., Juengel J.L., Ritvos O. and Davis G.H. (2002). BMP15 mutations and ovarian function. Mol. Cell. Endocrinol. 191, 15-18.
Galloway S.M., McNatty K.P., Cambridge L.M., Laitenen M.P.E., Juengel J.L., Jokiranta T.S., McLaren R.J., Luiro K., Dodds K.G., Montgomery G.W., Beattie A.E., Davis G.H. and Ritvos O. (2000). Mutations in an oocyte-derived growth factor (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat. Genet. 25, 279-283.
Gojobori T., Nakagawa S. and Clemente J.C. (2009). DNA Sequence Analysis, Encyclopedia of Life Sciences. John Wiley and Sons, Ltd: Chichester, United Kingdom.
Gordon D.B., Nekludova L., McCallum S. and Fraenkel E. (2005). TAMO: a flexible, object-oriented framework for analyzing transcriptional regulation using DNA-sequence motifs. Bioinformatics. 21(14), 3164-3175.
Gordon G. and Joiner-Bey H. (2004). The omega-3 Miracle the Icelandic Longevity Secret that Offers Super Protection Against Heart Disease. Freedom Press, California, USA.
Guan F., Liu S.R., Shi G.Q., Ai J.T., Mao D.G. and Yang L.G. (2006). Polymorphism of FecB gene in nine sheep breeds or strains and its effects on litter size, lamb growth and development. Acta Genet. Sinica. 33, 117-124.
Hanevik H.I., Hilmarsen H.T., Skjelbred C.F., Tanbo T. and Kahn J.A. (2011). A single nucleotide polymorphism in BMP15 is associated with high response to ovarian stimulation. Reprod. Biomed. Online. 23, 97-104.
Hanrahan J.P., Gregan S.M., Mulsant P., Mullen M., Davis G.H., Powell R. and Galloway S.M. (2004). Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol. Reprod. 70, 900-909.
Hashimoto O., Moore R.K. and Shimasaki S. (2005). Posttranslational processing of mouse and human BMP15 potential implication in the determination of ovulation quota. Proc. Natl. Acad. Sci. 102, 5426-5431.
He Y.Q., Chu M.X., Wang J.Y., Fang L. and Ye S.C. (2006). Polymorphism on BMP15 as a candidate gene for prolificacy in six goat breeds Chinese. J. Anhui Agric. Univ. 33, 61-64.
Librado P. and Rozas J. (2009). DnaSP v5: software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 25, 1451-1452.
McNatty K.P., Juengel J.L., Reader K.L., Lun S., Myllyma S., Lawrence S.B., Western A., Meerasahib M.F., Mottershead D.G., Groome N.P., Ritvos O. and Laitinen M.P. (2005). Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function in ruminants. Reproduction. 129, 481-487.
Monteagudo L.V., Ponz R., Tejedor M.T., Lavina A. and Sierra I. (2009). A 17 bp deletion in the bone morphogenetic protein 15 (BMP15) gene is associated to increased prolificacy in the Rasa Aragonesa sheep breed. Anim. Reprod. Sci. 110, 139-146.
Montgomery G.W., Galloway S.M., George H., Davis G.H. and McNatty K.P. (2001). Genes controlling ovulation rate in sheep. Reproduction. 121, 843-852.
Moron F.J., de Castro F., Royo J.L., Montoro L., Mira E., Sáez M.E., Real L.M., González A., Mañes S. and Ruiz A. (2006). Bone morphogenetic protein 15 (BMP15) alleles predict over-response to recombinant follicle stimulation hormone and iatrogenic ovarian hyperstimulation syndrome (OHSS). Pharmacogenet. Genom. 16, 485-495.
Otsuka F., Yamamoto S., Erickson G.F. and Shimasaki S. (2001). Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. J. Biol. Chem. 276, 11387-11392.
Silva J.R.V., van den Hurk R., van Tol H.T.A., Roelen B.A.J. and Figueiredo J.R. (2004). Experssion of growth differentiation factor 9 (GDF-9) and bone morphogenetic protein 15 (BMP-15) and BMP receptors in the ovaries of goats. Mol. Reprod. Dev. 70, 11-19.
Souza C.J.H., Campbell B.K., McNeilly A.S. and Baird D.T. (2002). Effect of bone morphogenetic protein 2 (BMP2) on oestradiol and inhibin A production by sheep granulosa cells, and localization of BMP receptors in the ovary by immune histochemistry. Reproduction. 123, 363-369.
Tamura K., Nei M. and Kumar S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. 101, 11030-11035.
Tamura K., Stecher S., Peterson D., Filipski A., and Kumar S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30(12), 2725-2729.
Yan C., Wang P., DeMayo J., DeMayo F.J., Elvin J.A., Carino C., Prasad S.V., Skinner S.S., Dunbar B.S., Dube J.L., Celeste A.J. and Matzuk M.M. (2001). Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol. Endocrinol. 15, 854-866.
Yang Z. and Kumar S. (1996). Approximate methods for estimating the pattern of nucleotide substitution and the variation of substitution rates among sites. Mol. Biol. Evol. 13, 650-659.