Thermodynamic study of an effective catalytic system, hydrogen peroxide and methyltrioxorhenium
الموضوعات : Iranian Journal of Catalysis
1 - Department of Chemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
الکلمات المفتاحية: Hydrogen peroxide, Methyltrioxorhenium, Thermodynamic study,
ملخص المقالة :
The thermodynamic of the known and very effective catalytic system, hydrogen peroxide (H2O2) and methyltrioxorhenium (MTO) is studied in different solvents using UV-Visible spectroscopic method. The thermodynamic parameters (ΔG, ΔH and ΔS) for two equilibrium reactions, MTO + H2O2 ⇌ A + H2O and A + H2O2 ⇌ B.H2O (A, [MeRe(O)2(O2)]; B.H2O, [MeRe(OH2)(O)(O2)2]), are determined. The obtained free energies of the reactions depend on dielectric constants of solvent, which are explained by Onsager’s reaction field theory.
[1] W.A. Herrmann, R.W. Fischer, D.W. Marz, Angew. Chem. Int. Ed. 30 (1991) 1638-1641.
[2] R. Saladino, V. Neri, P. Checconi, I. Celestino, L. Nencioni, A.T. Palamara, M. Crucianelli, Chem. Eur. J. 19 (2013) 2392-2404.
[3] S. Yamazaki, J. Org. Chem. 77 (2012) 9884-9888.
[4] T. Hwang, B.R. Goldsmith, B. Peters, S.L. Scott, Inorg. Chem. 52 (2013) 13904-13917.
[5] W.A. Herrmann, R.M. Kratzer, H. Ding, W.R. Thiel, H. Glas, J. Organomet. Chem. 555 (1998) 293-295.
[6] C.C. Romao, F.E. Kuhn, W.A. Herrmann, Chem. Rev. 97 (1997) 3197-3246.
[7] N. Al-Rawashdeh, A. Al-Ajlouni, S. Bukallah, N. Bataineh, J. Incl. Phenom. Macrocycl. Chem. 70 (2011) 471-480.
[8] S. Yamazaki, Org. Biomol. Chem. 8 (2010) 2377-2385.
[9] R. Yang, Y. Zhang, J. Zhao, Catal. Commun. 12 (2011) 923-926.
[10] F.E. Kuhn, A.M. Santos, W.A. Herrmann, Dalton Trans. (2005) 2483-2491.
[11] H. Tan, J.H. Espenson, Inorg. Chem. 37 (1998) 467-472.
[12] G.B. Shul'pin, M.V. Kirillova, Y.N. Kozlov, L.S. Shulpina, A.R. Kudinov, A.J. Pombeiro, J. Catal. 277 (2011) 164-172.
[13] F.P. Ballistreri, G.A. Tomaselli, R.M. Toscano, Tetrahedron Lett. 50 (2009) 6231-6232.
[14] G.S. Owens, J. Arias, M.M. Abu-Omar, Catal. Today 55 (2000) 317-363.
[15] J.H. Espenson, Chem. Commun. (1999) 479-488.
[16] M.M. Abu-Omar, P.J. Hansen, J.H. Espenson, J. Am. Chem. Soc. 118 (1996) 4966-4974.
[17] W.A. Herrmann, R.W. Fischer, W. Scherer, M.U. Rauch, Angew. Chem. Int. Ed. 32 (1993) 1157-1160.
[18] C. Coperet, H. Adolfsson, K.B. Sharpless, Chem. Commun. (1997) 1565-1566.
[19] M.L. Kuznetsov, A.J. Pombeiro, Inorg. Chem. 48 (2009) 307-318.
[20] F.N. Hosseini, S.M. Nabavizadeh, G. Azimi, J. Sol. Chem. 42 (2013) 2137-2148.
[21] C. Di Valentin, R. Gandolfi, P. Gisdakis, N. Rosch, J. Am. Chem. Soc. 123 (2001) 2365-2376.
[22] S.M. Nabavizadeh, M. Rashidi, J. Am. Chem. Soc. 128 (2006) 351-357.
[23] F.N. Hosseini, K. Kamali, S.M. Nabavizadeh, Polyhedron 30 (2011) 814-820.
[24] W.A. Herrmann, R.M. Kratzer, R.W. Fischer, Angew. Chem. Int. Ed. 36 (1997) 2652-2654.
[25] S. Yamazaki, J.H. Espenson, P. Huston, Inorg. Chem. 32 (1993) 4683-4687.
[26] Y. Marcus, Chem. Soc. Rev. 22 (1993) 409-416.
[27] A. Taha, A.M. Kiwan, New J. Chem. 25 (2001) 502-508.
[28] W.R. Fawcett, J. Phys. Chem. 97 (1993) 9540-9546.
[29] M.J. Kamlet, J.L.M. Abboud, M.H. Abraham, R. Taft, J. Org. Chem. 48 (1983) 2877-2887.
[30] J.L. Abboud, R. Notari, Pure Appl. Chem. 71 (1999) 645-718.
[31] J.N. Wilson, Chem. Rev. 25 (1939) 377-406.
[32] L. Onsager, J. Am. Chem. Soc. 58 (1936) 1486-1493.