Performance of Ni, Pt, and Pd Monometal and Ni-Pt Bimetal onto Activated Carbon for Hydrocracking of Castor Oil
الموضوعات : Iranian Journal of CatalysisWega Trisunaryanti 1 , Iip Falah 2 , Siti Nasi’ah 3 , Satriyo Sumbogo 4
1 - Department of Chemistry, Faculty of Mathematics and Natural Science, University Gadjah Mada, Yogyakarta, Indonesia
2 - Department of Chemistry, Faculty of Mathematics and Natural Science, University Gadjah Mada, Yogyakarta, Indonesia
3 - Department of Chemistry, Faculty of Mathematics and Natural Science, University Gadjah Mada, Yogyakarta, Indonesia
4 - Department of Chemistry, Faculty of Mathematics and Natural Science, University Gadjah Mada, Yogyakarta, Indonesia
الکلمات المفتاحية: Activated Carbon, Hydrocracking, Castor oil, Biofuels,
ملخص المقالة :
The development of high-performance hydrotreating catalysts has been a challenging pursuit within the catalyst research field. In this study, activated carbon was synthesized chemically, utilizing oxygen gas as the activator and Merbau wood as the precursor. Subsequently, the activated carbon was impregnated with both mono (Ni, Pt, Pd) and bimetallic (NiPt) species. Physical activation employing oxygen gas was employed in the preparation of the activated carbon. Notably, the optimum activation temperature using oxygen gas was identified at 350°C, aligning with the peak iodine value of 3989.7 mg/g. Subsequently, the activated carbon served as a highly efficient support material for the hydrocracking of castor oil. Among the investigated catalysts, the NiPt/AC catalyst emerged as the most promising, achieving a remarkable liquid fraction conversion of 88.73 wt%. However, it is crucial to acknowledge that the NiPt/AC catalyst exhibited limitations in terms of stability, experiencing sintering and performance degradation after only three usage cycles.
[1] Attaphaiboon, W., Neramittagapong, A., Neramittagapong, S., & Theerakulpisut, S. Potential of vegetable oils for producing green diesel via hydrocracking process. Thai Environ. Eng. J., 35(2), (2021). 1-11.
[2] El-Sawy, M. S., Hanafi, S. A., Ashour, F., & Aboul-Fotouh, T. M. Co-hydroprocessing and hydrocracking of alternative feed mixture (vacuum gas oil/waste lubricating oil/waste cooking oil) with the aim of producing high quality fuels. Fuel, 269, (2020). 117437.
[3] Mederos-Nieto, F. S., Elizalde-Martínez, I., Trejo-Zárraga, F., Hernández-Altamirano, R., & Alonso-Martínez, F. Dynamic modeling and simulation of three-phase reactors for hydrocracking of vegetable oils. Reaction Kinetics, Mechanisms and Catalysis, 131, (2020). 613-644.
[4] Al Muttaqii, M., Kurniawansyah, F., Prajitno, D. H., & Roesyadi, A. Hydrocracking process of coconut oil using Ni-Zn/HZSM-5 catalyst for hydrocarbon biofuel production. In Journal of Physics: Conference Series 1725 (1) (2021) 012008. IOP Publishing.
[5] Liu, J., Li, Y., He, J., Wang, L., Lei, J., & Rong, L. Ni-based non-sulfided inexpensive catalysts for hydrocracking/Hydrotreating of Jatropha oil. Mini-Rev. Org. Chem., 17(2), (2020). 141-147.
[6] Li, Z., Yang, X., Han, Y., & Rong, L. Hydrocracking of Jatropha oil to aromatic compounds over the LaNiMo/ZSM-5 catalyst. Inter. J. Hydrogen Ener, 45(41), (2020). 21364-21379.
[7] Kartika, I. A., Sumbogo, S. D., Fataya, I., Trisunaryanti, W., & Sailah, I. (2022, June). Optimization of Calophyllum oil extraction and its application for biogasoline. In IOP Conference Series: Earth and Environmental Science (Vol. 1034, No. 1, p. 012035). IOP Publishing.
[8] Trisunaryanti, W., Sumbogo, S. D., Mukti, R. R., Kartika, I. A., Hartati, & Triyono. Performance of low-content Pd and high-content Co, Ni supported on hierarchical activated carbon for the hydrotreatment of Calophyllum inophyllum oil (CIO). Reaction Kinetics, Mechan. Catal. 134, (2021). 259-272.
[9] Trisunaryanti, W., Mukti, R. R., Kartika, I. A., Firda, P. B. D., Sumbogo, S. D., Prasetyoko, D., & Bahruji, H. Highly selective hierarchical ZSM-5 from kaolin for catalytic cracking of Calophyllum inophyllum oil to biofuel. J. Energy Inst., 93(6), (2020). 2238-2246.
[10] Sihombing, J. L., Gea, S., Wirjosentono, B., Agusnar, H., Pulungan, A. N., Herlinawati, H., Yusuf, M., & Hutapea, Y. A. Characteristic and catalytic performance of Co and Co-Mo metal impregnated in sarulla natural zeolite catalyst for hydrocracking of MEFA rubber seed oil into biogasoline fraction. Catalysts, 10(1), (2020). 121.
[11] Singh, S., Sharma, S., Sarma, S. J., & Brar, S. K. A comprehensive review of castor oil‐derived renewable and sustainable industrial products. Environ. Progress Sustain. Energ., 42(2), (2023).e14008.
[12] Chauke, N. P., Mukaya, H. E., & Nkazi, D. B. Chemical modifications of castor oil: A review. Science Progress, 102(3), (2019).199-217.
[13] Yeboah, A., Ying, S., Lu, J., Xie, Y., Amoanimaa-Dede, H., Boateng, K. G. A., Chen, M., & Yin, X. Castor oil (Ricinus communis): a review on the chemical composition and physicochemical properties. Food Sci. Tech., 41, (2020). 399-413.
[14] Meller, E., Gutkin, V., Aizenshtat, Z., & Sasson, Y. Catalytic hydrocracking‐hydrogenation of castor oil fatty acid methyl esters over nickel substituted polyoxometalate catalyst. ChemistrySelect, 1(20), (2016)6396-6405.
[15] Trisunaryanti, W., Triyono, T., Purwono, S., Purwanti, A. S., & Sumbogo, S. D. Synthesis of mesoporous carbon from merbau sawdust as a nickel metal catalyst support for castor oil hydrocracking. Bullet. Chem. Reaction Eng. Catal., 17(1), (2022). 216-224.
[16] Wijaya, K., Syoufian, A., Fitroturokhmah, A., Trisunaryanti, W., Adi Saputra, D., & Hasanudin. Chrom/nanocomposite ZrO2-pillared bentonite catalyst for castor oil (ricinus communis) hydrocracking. Nano Hybrids and Composites, 27, (2019)31-37.
[17] Rorrer, J. E., Ebrahim, A. M., Questell-Santiago, Y., Zhu, J., Troyano-Valls, C., Asundi, A. S., Brenner, A.E., Bare, S.R., Tassone, T.J., Beckham, G.T., & Roman-Leshkov, Y. Role of Bifunctional Ru/Acid Catalysts in the Selective Hydrocracking of Polyethylene and Polypropylene Waste to Liquid Hydrocarbons. ACS Catal., 12(22), (2022). 13969-13979.
[18] Ma, Y., Liang, R., Wu, W., Zhang, J., Cao, Y., Huang, K., & Jiang, L. Enhancing the activity of MoS2/SiO2-Al2O3 bifunctional catalysts for suspended-bed hydrocracking of heavy oils by doping with Zr atoms. Chin. J. Chem. Eng., 39, (2021). 126-134.
[19] Tedstone, A. A., Bin Jumah, A., Asuquo, E., & Garforth, A. A. Transition metal chalcogenide bifunctional catalysts for chemical recycling by plastic hydrocracking: a single-source precursor approach. Royal Society Open Science, 9(3), (2022), 211353.
[20] Trisunaryanti, W., Larasati, S., Bahri, S., lailun Ni’mah, Y., Efiyanti, L., Amri, K., Nuryanto, R., & Sumbogo, S. D. Performance comparison of Ni-Fe loaded on NH2-functionalized mesoporous silica and beach sand in the hydrotreatment of waste palm cooking oil. J. Environ. Chem. Eng., 8(6), (2020).104477.
[21] Utami, M., Wijaya, K., & Trisunaryanti, W. Pt-promoted sulfated zirconia as catalyst for hydrocracking of LDPE plastic waste into liquid fuels. Mater. Chem. Physic., 213, (2018)548-555.
[22] Kusumastuti, H., Trisunaryanti, W., Falah, I. I., & Marsuki, M. F. Synthesis of mesoporous silica-alumina from lapindo mud as a support of Ni and Mo metals catalysts for hydrocracking of pyrolyzed α-cellulose. Rasayan J Chem, 11(2), (2018), 522-530.
[23] Saab, R., Polychronopoulou, K., Anjum, D. H., Charisiou, N., Goula, M. A., Hinder, S. J., Baker, M.A., & Schiffer, A.. Carbon Nanostructure/Zeolite Y Composites as Supports for Monometallic and Bimetallic Hydrocracking Catalysts. Nanomater., 12(18), (2022)3246.
[24] Jeon, S. G., Na, J. G., Ko, C. H., Yi, K. B., Rho, N. S., & Park, S. B.. Preparation and application of an oil-soluble CoMo bimetallic catalyst for the hydrocracking of oil sands bitumen. Energy & Fuels, 25(10), (2011), 4256-4260.
[25] Kostyniuk, A., Bajec, D., & Likozar, B. Hydrocracking, hydrogenation and isomerization of model biomass tar in a packed bed reactor over bimetallic NiMo zeolite catalysts: Tailoring structure/acidity. Applied Catalysis A: General, 612, (2021)118004.
[26] Trisunaryanti, W., Suarsih, E., & Falah, I. I. Well-dispersed nickel nanoparticles on the external and internal surfaces of SBA-15 for hydrocracking of pyrolyzed α-cellulose. RSC adv., 9(3), (2019). 1230-1237.
[27] Heidarinejad, Z., Dehghani, M. H., Heidari, M., Javedan, G., Ali, I., & Sillanpää, M. Methods for preparation and activation of activated carbon: a review. Environ. Chem. Lett., 18, (2020) 393-415.
[28] Yahya, M. A., Al-Qodah, Z., & Ngah, C. Z. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable and sustainable energy reviews, 46, (2015) 218-235.
[29] Santi, D., Trisunaryanti, W., & Falah, I. I. (2022, March). NiO Supported on Porous Carbon From Merbau Wood: Synthesis and Characterization. In IOP Conference Series: Materials Science and Engineering (Vol. 1232, No. 1, p. 012001). IOP Publishing.
[30] Žula, M., Grilc, M., & Likozar, B. Hydrocracking, hydrogenation and hydro-deoxygenation of fatty acids, esters and glycerides: Mechanisms, kinetics and transport phenomena. Chemical Engineering Journal, 444, (2022), 136564.
[31] Marlinda, L., Al-Muttaqii, M., Roesyadi, A., & Prajitno, D. H. (2017, May). Formation of hydrocarbon compounds during the hydrocracking of non-edible vegetable oils with cobalt-nickel supported on hierarchical HZSM-5 catalyst. In IOP Conference Series: Earth and Environmental Science (Vol. 67, No. 1, p. 012022). IOP Publishing.
[32] Al Muttaqii, M., Marlinda, L., Roesyadi, A., & Prajitno, D. H. Co-Ni/HZSM-5 catalyst for hydrocracking of Sunan candlenut oil (Reutealis trisperma (Blanco) airy shaw) for production of biofuel. J. Pure Applied Chem. Res., 6(2), (2017) 84.
[33] Cheng, J., Zhang, Z., Zhang, X., Liu, J., Zhou, J., Cen, K. Hydrodeoxygenation and hydrocracking of microalgae biodiesel to produce jet biofuel over H3PW12O40-Ni/hierarchical mesoporous zeolite Y catalyst. Fuel, 245, (2019) 384-391.
[34] Yi, H., Nakabayashi, K., Yoon, S. H., & Miyawaki, J. Pressurized physical activation: A simple production method for activated carbon with a highly developed pore structure. Carbon, 183, (2021) 735-742.
[35] Ding, Y., Qi, J., Hou, R., Liu, B., Yao, S., Lang, J. & Yang, B. Preparation of high-performance hierarchical porous activated carbon via a multistep physical activation method for supercapacitors. Energy & Fuels, 36(10), (2022) 5456-5464.
[36] Gao, Y., Yue, Q., Gao, B., & Li, A.. Insight into activated carbon from different kinds of chemical activating agents: A review. Sci. Total Env., 746, (2020)141094.
[37] Gayathiri, M., Pulingam, T., Lee, K. T., & Sudesh, K. Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism. Chemosphere, 294, (2022). 133764.
[38] Mariana, M., HPS, A. K., Mistar, E. M., Yahya, E. B., Alfatah, T., Danish, M., & Amayreh, M.. Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption. J. Water Process Eng., 43, (2021) 102221.
[39] Saleem, J., Shahid, U. B., Hijab, M., Mackey, H., & McKay, G.. Production and applications of activated carbons as adsorbents from olive stones. Biomass Conver. Bioref., 9, (2019) 775-802.
[40] Mopoung, S., Moonsri, P., Palas, W., & Khumpai, S. (2015). Characterization and properties of activated carbon prepared from tamarind seeds by KOH activation for Fe (III) adsorption from aqueous solution. The scientific world journal, 2015.