Comparative study on the electrocatalytic activity of dissimilar electrode combinations for the treatment of textile effluent by electrocoagulation process and their subsequent reuse
الموضوعات : Iranian Journal of CatalysisJovitha David 1 , Asath Stephen Maria 2 , Riju Robin 3 , Sahaya Sebastian 4 , Jegathambal Palanichamy 5 , Parameswari Kalivel 6
1 - Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore-641114, Tamil Nadu, India.
2 - Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore-641114, Tamil Nadu, India.
3 - Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore-641114, Tamil Nadu, India.
4 - Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore-641114, Tamil Nadu, India.
5 - Water Institute, Karunya Institute of Technology and Sciences, Coimbatore-641114, Tamil Nadu, India.
6 - Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore-641114, Tamil Nadu, India.
الکلمات المفتاحية: BOD, Catalytic activity, Textile effluent, COD reduction, Dissimilar electrodes,
ملخص المقالة :
The synthetic dyes which are largely used in the textile industries pollute the total ecosystem. They can be treated using different technologies but in order to avoid secondary pollution and to carry out an eco-friendly technique, an electrocoagulation process has been adopted. In this work, two sets of electrodes which act as the electrocatalysts for the process of electrocoagulation, with one set containing aluminium as an anode and the other with copper as anode has been used to contrast and compare the removal efficacies. The colour removal efficiency was observed as 98.42% for Al-Cu, and 95.12% for Cu-Al electrodes. The COD and BOD removal efficiency was found to be 89.74%, 86.1% for Al-Cu and 87.15%, 85.23% for Cu-Al electrodes. The cost for the treatment process was 3.31 US$/m3 and 0.22 US$/m3 for Al-Cu and Cu-Al electrodes respectively. The sludge was subjected to EDX, SEM, and XPS analysis which showed the formation of hydroxides and dissolution of an anode implying copper as the best anode material. The energy and electrode consumption, operating cost was minimum for copper than aluminium. Due to high COD and BOD removal, the treated water can be reused for agriculture and for fish growth.
[1] P. Zucca, C.M.B. Neves, M.M.Q. Simoes, M.G.P.M.S. Neves, G. Cocco, E. Sanjust, Molecules. 21 (2016) 964.
[2] K.K. Samanta, P. Pandit, P. Samanta, S. Basak, Water in Textiles and Fashion, Woodland Publishing, 2019, pp. 41-59.
[3] M.A. Uqaili, K. Harijan (Eds), Energy, Environment and Sustainable Development. Springer Science and Business Media, New York, 2011.
[4] International Recommendations for Industrial Statistics, Iris Business Services (India) Private Limited, 2008.
[5] T. Seyedi-Chokanlou, S. Aghabeygi, N. Molahasani, F. Abrinaaei, Iran. J. Catal. 11 (2021) 49-58.
[6] A. Rostami-Vartooni, A. Moradi-Saadatmand, M. Bagherzadeh, M. Mahdavi, Iran. J. Catal. 9 (2019) 27-35.
[7] S. Ghattavi, A. Nezamzadeh-Ejhieh, Compos. B. 183 (2020) 107712.
[8] A. Tenenbaum, J. David, Environ. Health Perspect. 106 (1998) A235.
[9] C.E. Gurnhan, Industrial Waste Control, Academic Press, New York, 1965.
[10] D. Prabakar, S.K. Suvetha, V.T. Manimudi, T. Mathimani, G. Kumar, E.R. Rene, A. Pugazhendhi, J. Environ. Manage. 218 (2018) 165-180.
[11] C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, A.B Pandit, J. Environ. Manage. 182 (2016) 351-366.
[12] S.N. Singh, Environmental Science and Engineering, Springer, 2014, pp. 367.
[13] C.M. Carlliel, S.J. Barclay, C. Shaw, A.D. Wheatley, C.A. Buckley, Environ. Technol. 19 (1998) 1133-1137.
[14] A. Bafana, S.S. Devi, T. Chakrabarti, Environ. Rev. 19 (2011) 350-371.
[15] R.G. Saratale, G.D. Saratale, D.C. Kalyani, J.S. Chang, S.P. Govindwar, Bioresour. Technol. 100 (2009) 2493-2500.
[16] E.A. Clarke, R. Anliker, In Handbook of Environmental Chemistry, (Eds) O. Hutzinger. Springer-Verlag, Heidelberg, 1980, pp. 181-215.
[17] K.T. Chung, S.E. Stevens, Environ. Toxicol. Chem. 12 (1993) 2121-2132.
[18] N. Puvaneswari, J. Muthukrishnan, P. Gunasekaran, Indian J. Exp. Biol. 44 (2006) 618-626.
[19] G. Zaalishvili, E. Lomidze, O. Buadze, T. Sadunishvili, P. Tkhelidze, G. Kvesitadze, Int. Biodeterior. Biodegrad. 46 (2000) 133-140.
[20] S. Parmar, S. Daki, S. Bhattacharya, A. Shrivastav, Development in Wastewater Treatment Research and Processes, Elsevier, 2022, pp. 175-193.
[21] A. Garg, K.L. Bhat, C.W. Bock, Dyes Pigm. 55 (2002) 35-52.
[22] M.S. Tsuboy, J.P.F. Angeli, M.S. Mantovani, S. Knasmuller, G.A. Umbuzeiro, L.R. Ribeiro, Toxicol. In Vitro. 21 (2007) 1650-1655.
[23] A. Stammati, C. Nebbia, I.D. Angelis, A.G. Albo, M. Carletti, C. Rebecchi, F. Zampaglioni, M. Dacasto, Toxicol. In Vitro. 19 (2005) 853-858.
[24] Y. Juang, E. Nurhayati, C. huang, J.R. Pan, S. Huang, Sep. Purif. Technol. 120 (2013) 289-295.
[25] G. McMullan, C. Meehan, A. Conneely, N. Kirby, T. Robinson, P. Nigam, I. Banat, R. Marchant, W. Smyth, Appl. Microbiol. Biotechnol. 56 (2001) 81-87.
[26] S. Ahmadzadeh, M. Dolatabadi, Environ. Earth Sci. 77 (2018) 1-11.
[27] S. Ahmadzadeh, M. Dolatabadi, J. Mol. Liq. 254 (2018) 76-82.
[28] D.T. Moussa, M.H. El-Naas, M. Nasser, M.J. Al-Marri, J. Environ. Manage. 186 (2017) 24-41.
[29] S. Ahmadzadeh, A. Asadipour, M. Pournamdari, B. Behnam, H.R. Rahimi, M. Dolatabadi, Process Saf. Environ. Prot. 109 (2017) 538-547.
[30] C.T. Wang, W.L. Chou, Y.M. Kuo, J. Hazard. Mater. 164 (2009) 81-86.
[31] S. Barisci, O. Turkay, J. Water Process. Eng. 10 (2016) 56-66.
[32] D.D. Nguyen, H.H. Ngo, W. Guo, T.T. Nguyen, S.W. Chang, A. Jang, Y.S. Yoon, Sci. Total Environ. 563-564 (2016) 549-556.
[33] M. Kobya, F. Ulu, U. Gebologlu, E. Demirbas, M.S. Oncel, Sep. Purif. Technol. 77 (2011) 283-293.
[34] Y. Kuroda, Y. Kawada, T. Takahashi, Y. Ehara, T. Ito, A.Z.Y. Kono, K. Yasumoto, J. Electrostat. 57 (2003) 407-415.
[35] N.F. Nielsen, C. Anderson, Electrostatic Precipitation, 2009, pp. 111-118.
[36] T.H. Kim, C. Park, J. Yang, S. Kim, J. Hazard. Mater. 112 (2004) 95-103.
[37] P. Durango-Usuga, F. Guzman-Duque, R. Mosteo, M.V. Vazquez, G. Penuela, R.A. Torres-Palma, J. Hazard. Mater. 179 (2010) 120-126.
[38] M.C. Wei, K.S. Wang, C.L. Huang, C.W. Chiang, T.J. Chang, S.S. Lee, S.H. Chang, Chem. Eng. J. 192 (2012) 37-44.
[39] B.K. Korbahti, K. Artut, C. Gecgel, A. Ozer, Chem. Eng. J. 173 (2011) 677-688.
[40] C.L. Yang, J. McGarrahan, J. Hazard. Mater. 127 (2005) 40-47.
[41] A.K. Golder, N.H. Hridaya, A.N. Samanta, S. Ray, J. Hazard. Mater. 127 (2005) 134-140.
[42] M.S. Secula, I. Cretescu, S. Petrescu, Desalination. 277 (2011) 227-235.
[43] U.B. Ogutveren, N. Gonen, S. Koparal, J. Environ. Sci. Health A. 27 (1992) 1237-1247.
[44] M.Y.A. Mollah, S.R. Pathak, P.K. Patil, M. Vayuvegula, T.S. Agarwal, J.A.G. Gomes, M. Kesmez, D.L. Cocke, J. Hazard. Mater. 109 (2004) 165-171.
[45] P. Kalivel, R.P. Singh, S. Kavitha, D. Padmanabhan, S.K. Krishnan, J. Palanichamy, Ecotoxicol. Environ. Saf. 201 (2020) 110858.
[46] H. Srikantha, M. Shivaswamy, S. Mahesh, Water Sci. Technol. 82 (2020) 1467-1483.
[47] J.L. Trompette, Colloids Surf. A Physicochem. Eng. Asp. 648 (2022) 129196.
[48] M. Ince, Sep. Sci. Technol. 48 (2013) 515-522.
[49] M.K.N. Mahmad, M.A.Z.M.R. Rozainy, I. Abustan, N. Baharun, Procedia Chem. 19 (2016) 681-686.
[50] T. Tamiji, A. Nezamzadeh-Ejhieh, J. Taiwan Inst. Chem. Eng. 104 (2019) 130-138.
[51] E. Zarei, M.R. Jamali, J. Bagheri, Iran. J. Catal. 8 (2018) 165-177.
[52] R.A. Mirzaie, F. Hamedi, Iran. J. Catal. 5 (2015) 275-283.
[53] A. Ehsani, R. Asgari, A. Rostami-Vartooni, H.M. Shiri, A. Yeganeh-Faal, Iran. J. Catal. 6 (2016) 269-274.
[54] T. Tamiji, A. Nezamzadeh-Ejhieh, Mater. Chem. Phys. 237 (2019) 121813.
[55] A. Ehsani, M. Hadi, E. Kowsari, S. Doostikhah, J. Torabian, Iran. J. Catal. 7 (2017) 187-192.
[56] M.A. Sadik, Adv. Chem. Engineer. Sci. 9 (2019) 182-193.
[57] J.A. Aguilar-Torrejon, P. Balderas-Hernandez, G. Roa-Morales, C.E. Barrera-Diaz, I. Rodriguez-Torrez, T. Torres-Blancas, SN Appl. Sci. 5 (2023) 118.
[58] H. Zazou, H. Afanga, S. Akhouairi, H. Ouchtak, A.A. Addi, R.A. Akbour, A. Assabbane, J. Douch, A. Elmchaouri, J. Duplay, A. Jada, M. Hamdani, J. Water Process. Eng. 28 (2019) 214-221.
[59] C.E. Barrera-Diaz, P. Balderas-Hernandez, B. Bilyeu, Electrochemical Water and Wastewater Treatment, 2018, pp. 61-76.
[60] A.S. Koparal, U.B. Ogutveren, J. Hazard. Mater. 89 (2002) 83-94.
[61] P.R. Kumar, S. Chaudhari, K.C. Khilar, S.P. Mahajan, Chemosphere. 55 (2004) 1245-1252.
[62] P.K. Holt, G.W. Barton, C.A. Mitchell, Water Sci. Technol. 50 (2004) 177-184.
[63] C.Y. Hu, S.L. Lo, W.H. Kuan, Y.D. Lee, Water Res. 39 (2005) 895-901.
[64] C. Tsouris, D.W. Depaoli, J.T. Shor, M.Z.-C. Hu, T.-Y. Ying, Colloids Surf. A Physicochem. Eng. Asp. 177 (2001) 223-233.
[65] C. Comninellis, G. Chen, Electrochemistry for the Environment. Springer, New York, 2009, pp: 566.
[66] G. Chen, Sep. Purif. Technol. 38 (2004) 11-41.
[67] M. Kobya, O.T. Can, M. Bayramoglu, J. Hazard. Mater. 100 (2003) 163-178.
[68] S.H. Lin, M.L. Chen, Water Res. 31 (1997) 868-876.
[69] J.S. Do, M.L. Chen, J. Appl. Electrochem. 24 (1994) 785-790.
[70] J. Zhu, H. Zhao, J. Ni, Sep. Purif. Technol. 56 (2007) 184-191.
[71] E. Bazrafshan, A. Mahvi, M.A. Zazouli, Iran. J. Health Sci. 2 (2014) 16-29.
[72] D.T. Moussa, M.H. El-Naas, M. Nasser, M.J. Al-Marri, J. Environ. Manage. 186 (2017) 24-41.
[73] I. Ali, M. Asim, T.A. Khan, Int. J. Environ. Sci. Technol. 10 (2013) 377-384.
[74] N. Daneshvar, A.R. Khatee, N. Djafarzadeh, J. Hazardous Materials, 137 (2006) 1788-1795.
[75] N. Drouiche, S. Aoudj, M. Hecini, N. Ghaffour, H. Lounici, N. Mameri, J. Hazard. Mater. 169 (2009) 65-69.
[76] C. An, G.H. Huang, Y. Yao, S. Zhao, Sci. Total Environ. 579 (2017) 537-556.
[77] A.K. Verma, J. Water Process Eng. 20 (2017) 168-172.
[78] A. Akyol, Desalination. 285 (2012) 91-99.
[79] A.H. Essadki, M. Bennajah, B. Gourich, C. Vial, M. Azzi, H. Delmas, Chem. Eng. Process.: Process Intensif. 47 (2008) 1211-1223.
[80] M.M. Emamjomeh, M. Sivakumar, J. Environ. Manage. 90 (2009) 1663-1679.
[81] A. Eslami, M. Moradi, F. Ghanbari, F. Mehdipour, J. Environ. Health Sci. Eng. 11 (2013) 31.
[82] M. Kobya, E. Gengec, E. Demirbas, Chem. Eng. Process. 101 (2016) 87-100.
[83] V. Kuokkanen, T. Kuokkanen, J. Ramo, U. Lassi, Green Sustain. Chem. 3 (2013) 89-121.
[84] S.M. Safwat, A. Hamed, E. Rozaik, Sep. Sci. Technol. 54 (2018) 183-194.
[85] E.A. Vik, D.A. Carlson, A.S. Eikum, E.T. Gjessing, Water Res. 18 (1984): 1355-1360.
[86] N.M. Mahmoodi, A. Dalvand, Desalination Water Treat. 51 (2013) 5959-5964.
[87] M. Tir, N. Moulai-Mostefa, J. Hazard. Mater. 158 (2008) 107-115.
[88] W. Den, C. Huang, H.C. Ke, Ind. Eng. Chem. Res. 45 (2006) 3644-3651.
[89] B.K. Korbahti, A. Tanyolac, Ind. Eng. Chem. Res. 42 (2003) 5060-5065.
[90] D. Rajkumar, K. Palanivelu, Ind. Eng. Chem. Res. 42 (2003) 1833-1839.
[91] G. Roa-Morales, E. Campos-Medina, J. Aguilera-Cotero, B. Bilyeu, C. Barrera-Diaz, Sep. Purif. Technol. 54 (2007) 124-129.
[92] A.S. Naje, S. Chelliapan, Z. Zakaria, S.A. Abbas, Int. J. Electrochem. Sci. 10 (2015) 5924-5941.
[93] P.K. Holt, G.W. Barton, M. Wark, C.A. Mitchell, Colloids Surf. A Physicochem. Eng. Asp. 211 (2002) 233-248.
[94] A.S. Mohammed, A. El-Gendi, K.M. El-Khatib, S.H. Hassan, Water, Energy, Food Environ. J. 2 (2021) 41-53.
[95] P. Kupittayanant, W. Kinchareon, J. Anim. Vet. Adv. 10 (2011) 2631-2638.
[96] C.D. Zhu, Z.H. Wang, B. Yan, J. Comp. Physiol. B. 183 (2013) 1005-1013.
[97] B. Pelster, M. Egg, J. Exp. Biol. 221 (2018) 163709.
[98] A. Mudhoo, D.L. Ramasamy, A. Bhatnagar, M. Usman, M. Sillanpaa, Ecotoxicol. Environ. Saf. 197 (2020) 110587.
[99] R. Patil, M. Zahid, S. Govindwar, R. Khandere, G. Vyavahare, R. Gurav, N. Desai, S. Pandit, J. Jadhav, Development in Wastewater Treatment Research and Processes, Elsevier, 2022, pp. 173-198.
[100] M.M. Hossain, M.I. Mahmud, M.S. Parvez, H.M. Cho, Environ. Eng. Res. 18 (2013) 157-161.
[101] B. Merzouk, K. Madani, A. Sekki, Desalination. 250 (2010) 573-577.
[102] Y. Li, X. Yuan, Z. Wu, H. Wang, Z. Xiao, Y. Wu, X. Chen, G. Zeng, Chem. Eng. J. 303 (2016) 636-645.
[103] K.K. Garg, B. Prasad, J. Environ. Chem. Eng. 4 (2016) 178-190.
[104] D. Ghosh, C.R. Medhi, M.K. Purkait, Chemosphere. 73 (2008) 1393-1400.
[105] T. Picard, G. Cathalifaud-Feuillade, M. Mazet, C. Vandensteendam, J. Environ. Monitor. 2 (2000) 77-80.
[106] J.T. Kloprogge, L.V. Duong, B.J. Wood, R.L. Frost, J. Colloid Interface Sci. 296 (2006) 572-576.
[107] J.B. He, D.Y. Lu, G.P. Jin, Appl. Surf. Sci. 253 (2006) 689-697.
[108] Riyanto, M.R. Othman, Int. J. Electrochem. Sci. 10 (2015) 4911-4921.
[109] D. Koushik, W.J.H. Verhees, D. Zhang, Y. Kuang, S. Veenstra, M. Creatore, R.E.I. Schropp, Adv. Mater. Interfaces. 4 (2017) 1700043.