Propane Oxidative Dehydrogenation on BiP1-xVxO4 Supported Titania Catalysts
الموضوعات : Iranian Journal of CatalysisMbarka Ouchabi 1 , Loulidi Ilyasse 2 , Mahfoud Agunaou 3
1 - Laboratory of Catalysis and Corrosion of Materials, Chouaïb Doukkali University, Faculty of Sciences El Jadida, BP. 20, El Jadida, Morocco
2 - Laboratory of Chemistry and Biology Applied to the Environment, Faculty of Sciences, Moulay Ismail University, BP 11201-Zitoune, Meknes, Morocco
3 - Laboratory of Catalysis and Corrosion of Materials, Chouaïb Doukkali University, Faculty of Sciences El Jadida, BP. 20, El Jadida, Morocco
الکلمات المفتاحية: Propane oxidative dehydrogenation, BiP1-xVxO4/TiO2 catalyst, methanol oxidation,
ملخص المقالة :
The molecularly dispersed BiP1-xVxO4/TiO2 supported materials, with x varying from 0 to 1, were prepared by impregnation of Bismuth, Phosphorus, and Vanadium on a Titanium Oxide TiO2 support. Their structures were characterized by different techniques including X-ray diffraction, Spectroscopic Raman, temperature-programmed reduction of the catalysts in H2 (H2-TPR), and by the methanol oxidation reaction. This very sensitive technique provided us with relevant information on the nature of the catalytic active sites (acid-base and redox) of the phases dispersed on the support. The characterization results show the structural evolution of BiP1-xVxO4 species, from isolated BiPO4 crystallites for x =0, to BiVO4 crystallites x =1. The oxidation of methanol showed the acidic properties of the BiPO4/TiO2 catalyst, through the formation of dimethyl ether as the major product of the reaction. The substitution of phosphorus by vanadium promotes the formation of formaldehyde, confirming the presence of redox sites. These catalysts were examined in the oxidative dehydrogenation (ODH) of propane to propene. For x > 0.5, dispersed BiVO4 exhibited higher levels of propane ODH than BiPO4 crystallites, consistent with their greater reducibility probed by temperature-programmed reduction of H2 and the presence of redox sites confirmed by methanol oxidation, with good selectivity to propene. Catalysts with x = 0, were less selective to propene due to favorable propylene combustion during its formation. A thorough understanding of the intrinsic catalytic properties of the BiP1-xVxO4/TiO2 oxides and in particular the BiPO4 and BiVO4 crystallites provides relevant information on the structural requirements of the propane ODH reaction, of interest for the design of more efficient Bi-P-V-O based catalysts for propene production. The results show that all substituted catalysts exhibit significant propene selectivity. In addition, the BiP0.7V0.3O4/TiO2 catalyst exhibits high activity with good propene selectivity. This catalytic activity was correlated with high reducibility.
[1] H.H. KUNG, Adv. Catal. 40 (1994) 1–38.
[2] E.A. Mamedov, V. Cortés Corberán, Appl. Catal. A, Gen. 127 (1995) 1–40.
[3] J.M.L.N. T. Blasco, Appl. Catal. A Gen. 157 (1997) 117–142.
[4] R. Grabowski, Catal. Rev. Sci. Eng. 48 (2007) 199–268.
[5] F. Cavani, N. Ballarini, A. Cericola, Catal. Today 127 (2007) 113–131.
[6] J.J.H.B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, B.M. Weckhuysen, Chem. Rev. 114 (2014) 10613–10653.
[7] W. Zhu, X. Chen, J. Jin, X. Di, C. Liang, Z. Liu, Chinese J. Catal. 41 (2020) 679–690.
[8] M. OUCHABI, I. LOULIDI, M. AGUNAOU, Iran. J. Chem. Chem. Eng. (2022).
[9] L. Savary, J. Saussey, G. Costentin, M.M. Bettahar, M. Gubelmann-Bonneau, J.C. Lavalley, Catal. Today 32 (1996) 57–61.
[10] P. Nagaraju, N. Lingaiah, P.S.S. Prasad, V.N. Kalevaru, A. Martin, Catal. Commun. J. 9 (2008) 2449–2454.
[11] and T.M. N. Ballarinia, F. Cavania,*, C. Cortellia, S. Ligia, F. Pierellia, F. Trifiro` a, C. Fumagallib, G. Mazzonib, Top. Catal. 38 (2006) 147–156.
[12] S. Arias-pe, R. Garcı, B.E. Handy, S. Robles-andrade, G. Sandoval-robles, V. Di, Ind. Eng. Chem. Res. 48 (2009) 1215–1219.
[13] B.G. A. Klisin´ska, K. Samson, I. Gressel, Appl. Catal. A Gen. 309 (2006) 10–16.
[14] A. Caldarelli, F. Cavani, F. Folco, S. Luciani, C. Cortelli, R. Leanza, in: Catal. Today, 2010, pp. 204–210.
[15] M. Ruitenbeek, A.J. Van Dillen, A. Barbon, E.E. Van Faassen, D.C. Koningsberger, J.W. Geus, Catal. Letters 55 (1998) 133–139.
[16] M.P. Casaletto, G. Landi, L. Lisi, P. Patrono, F. Pinzari, "Journal Mol. Catal. A, Chem. 329 (2010) 50–56.
[17] C.A. Carrero, R. Schloegl, I.E. Wachs, R. Schomaecker, ACS Catal. 4 (2014) 3357–3380.
[18] B. Solsona, A. Dejoz, M.I. Vázquez, F. Márquez, J.M. López Nieto, Appl. Catal. A Gen. 208 (2001) 99–110.
[19] H. Zhang, S. Cao, Y. Zou, Y. Wang, X. Zhou, Y. Shen, X. Zheng, Catal. Commun. 45 (2014) 158–161.
[20] S.J.K. Miguel A. Ban˜ares*, Catal. Today 96 (2004) 251–257.
[21] A.A. Lemonidou, L. Nalbandian, I.A. Vasalos, Catal. Today 61 (2000) 333–341.
[22] R.A. Overbeek, P.A. Warringa, L.M. Visser, A.J. Van Dillen, J.W. Geus, Appl. Catal. A Gen. 135 (1996) 209–230.
[23] J.M. Tatibouët, Appl. Catal. A Gen. 148 (1997) 213–252.
[24] AGUNAOU M., OUCHABI M., Ann. Chim. Sci. Des Matériaux 25 (2000) 17–20.
[25] C. Ding, A. Han, M. Ye, Y. Zhang, L. Yao, J. Yang, RSC Adv. 8 (2018) 19690–19700.
[26] X. Li, F. Li, X. Lu, S. Zuo, Z. Li, C. Yao, C. Ni, Powder Technol. 327 (2018) 467–475.
[27] R. Luschtinetz, J. Frenzel, T. Milek, G. Seifert, J. Phys. Chem. C 113 (2009) 5730–5740.
[28] H.-I.L. Sang-Gi Lee, Korean J. Chem. Eng. 15 (1998) 463–468.
[29] B.R. Jermy, B.P. Ajayi, B.A. Abussaud, S. Asaoka, J. OfMolecular Catal. A Chem. (2015).
[30] Y. Cho, D. Park, D. Park, Res. Chem. Intermed. 28 (2002) 419–431.
[31] Y. Cho, B. Hwang, D. Park, H. Woo, J. Chung, Korean J. Chem. Eng. 19 (2002) 611–616.
[32] Y.G. Cho, H.C. Woo, J.S. Chung, Res. Chem. Intermed. 2002 285 28 (2002) 419–431.
[33] A.S. Elmi, E. Tronconi, C. Cristiani, J.P.G. Martin, P. Forzatti, G. Busca, Ind. Eng. Chem. Res. 1989, 28 (1989) 387–393.
[34] I.E.W. Goutam Deo, J. Catal. 146 (1994) 323–334.
[35] J.M. Parera, X.S. Figoli, J. Catal. 14 (1969) 303–310.
[36] J.M. Tatibouet, Appl. Catal. A Gen. 148 (1997) 213–252.
[37] R. Grabowski, B. Grzybowska, A. Kozłowska, J. Słoczyński, K. Wcisło, Y. Barbaux, Top. Catal. 3 (1996) 277–288.
[38] P. Concepción, J.M.L. Nieto, J. Pérez-Pariente, J. Mol. Catal. A Chem. 97 (1995) 173–182.
[39] M. Nehate, V. V. Bokade, Appl. Clay Sci. 44 (2009) 255–258.
[40] C. Ding, A. Han, M. Ye, Y. Zhang, L. Yao, J. Yang, RSC Adv. 8 (2018) 19690–19700.
[41] P. Concepcion, J.M.L. Nieto, J. Mol. Catal. A Chem. 99 (1995) 173–182.
[42] R. Grabowski, B. Grzybowska, A. Koztowska, J. Stoczyfiski, K. Wcisto, Top. Catal. 3 (1996) 277–288.
[43] J.D.B. ROBERT K. GRASSELLI, Adv. Catal. 30 (1981) 133–162.
[44] O.S. M. Baems , O.V. Buyevskaya, M. Kubik , G. Maiti , O. Ovsitser, Catal. Today 33 (1997) 85–96.
[45] R. Grabowski, B. Grzybowska, K. Samson, J. Stoczyfiski, J. Stoch, K. Wcisto, Appl. Catal. A Gen. 125 (1995) 129–144.
[46] j. p. B. Dominique Courcot , Anne Ponchel , Barbara Grzybowska, Yolande Barbaux , Monique Rigole , Michel Guelton, Catal. Today 33 (1997) 109–118.
[47] J.M.L.N. P. Concepcion, A. Galli, Top. Catal. 3 (1996) 451–460.
[48] F. Arena, F. Frusteri, A. Parmaliana, Catal. Letters 60 (1999) 59–63.
[49] S. Zhang, H. Liu, Appl. Catal. A Gen. 573 (2019) 41–48.
[50] F. Arena, F. Frusteri, A. Parmaliana, Catal. Lett. 1999 601 60 (1999) 59–63.
[51] P. Concepción, A. Galli, J.M. López Nieto, A. Dejoz, M.I. Vazquez, Top. Catal. 1996 33 3 (1996) 451–460.
[52] H. Nair, C.D. Baertsch, J. Catal. 258 (2008) 1–4.