Functionalized mesostructured silicas towards efficient conversion of furfuryl alcohol to ethyl levulinate
الموضوعات : Iranian Journal of CatalysisRahul Prajapati 1 , Sanjay Srivastava 2 , Giriraj Jadeja 3 , Jigisha Parikh 4
1 - Department of Chemical Engineering, Government Engineering College, Valsad-396001, Gujarat, India
2 - Department of Chemical Engineering, Government Engineering College, Valsad-396001, Gujarat, India
3 - Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat-395007, Gujarat, India
4 - Department of Chemical Engineering, Government Engineering College, Valsad-396001, Gujarat, India
الکلمات المفتاحية: Furfuryl alcohol, Ethyl levulinate, Ethyl alcohol, SHS-15, SHS-16,
ملخص المقالة :
In this study, we synthesized ethyl levulinate (EL) by alcoholysis of furfuryl alcohol (FAL) with ethanol using two catalysts, SBA-15-SO3H (SHS-15) and SBA-16-SO3H (SHS-16). The catalysts were prepared through the hydrothermal method, and their physical and chemical properties were assessed using various techniques such as small and wide-angle XRD, N2-sorption, SEM, TEM, FTIR, and Py-FTIR. Characterization results showed that SHS-15 possesses a mesoporous structure with a higher surface area and uniform pore size, along with moderate Brønsted acidity. In catalytic activity, both catalysts were tested for converting FAL to EL under moderate reaction conditions. SHS-15 exhibited excellent performance, achieving a yield of 93.9% for ethyl levulinate at 110°C, with a 0.5g catalyst dose, 1g FAL, and 4h reaction time. In contrast, SHS-16 yielded 88.6%, which was lower than SHS-15. These findings highlight the potential of SHS-15 as an effective catalyst for the alcoholysis of FAL into EL under moderate reaction conditions.
[1] Y. Li, S. Wang, S. Fan, B. Ali, X. Lan, T. Wang, ACS Sustain. Chem. Eng. 10 (2022) 3808–3816.
[2] B.J. Vaishnavi, S. Sujith, N. Kulal, P. Manjunathan, G.V. Shanbhag, Mol. Catal. 502 (2021) 111361.
[3] A. Démolis, N. Essayem, F. Rataboul, ACS Sustain. Chem. Eng. 2 (2014) 1338–1352.
[4] K. Yan, G. Wu, T. Lafleur, C. Jarvis, Renew. Sustain. Energy Rev. 38 (2014) 663–676.
[5] E. Ahmad, Md.I. Alam, K.K. Pant, M.A. Haider, Green Chem. 18 (2016) 4804–4823.
[6] Y. Jing, Y. Guo, Q. Xia, X. Liu, Y. Wang, Chem 5 (2019) 2520–2546.
[7] H. Joshi, B.R. Moser, J. Toler, W.F. Smith, T. Walker, Biomass Bioenergy 35 (2011) 3262–3266.
[8] D.R. Jones, S. Iqbal, S. Ishikawa, C. Reece, L.M. Thomas, P.J. Miedziak, D.J. Morgan, J.K. Edwards, J.K. Bartley, D.J. Willock, G.J. Hutchings, Catal. Sci. Technol. 6 (2016) 6022–6030.
[9] X. Liu, H. Pan, H. Zhang, H. Li, S. Yang, ACS Omega 4 (2019) 8390–8399.
[10] Y. Bai, Y. Liu, F. Bai, Q. Sun, L. Li, T. Zhang, Open Chem. 19 (2021) 1294–1300.
[11] T. Chhabra, J. Rohilla, V. Krishnan, Mol. Catal. 519 (2022) 112135.
[12] C. Canon, N. Sanchez, M. Cobo, J. Clean. Prod. 377 (2022) 134276.
[13] Q. Guo, F. Yang, X. Liu, M. Sun, Y. Guo, Y. Wang, Chin. J. Catal. 41 (2020) 1772–1781.
[14] E. Ahmad, K. Kishore Pant, M. Ali Haider, Mater. Sci. Energy Technol. 5 (2022) 189–196.
[15] M. Przypis, K. Matuszek, A. Chrobok, M. Swadźba-Kwaśny, D. Gillner, J. Mol. Liq. 308 (2020) 113166.
[16] S. An, D. Song, B. Lu, X. Yang, Y.-H. Guo, Chem. - Eur. J. 21 (2015) 10786–10798.
[17] W. Zhu, C. Chang, C. Ma, F. Du, Chin. J. Chem. Eng. 22 (2014) 238–242.
[18] P. Demma Carà, R. Ciriminna, N.R. Shiju, G. Rothenberg, M. Pagliaro, ChemSusChem 7 (2014) 835–840.
[19] A. Brzęczek-Szafran, J. Więcławik, N. Barteczko, A. Szelwicka, E. Byrne, A. Kolanowska, M. Swadźba Kwaśny, A. Chrobok, Green Chem. 23 (2021) 4421–4429.
[20] A. Hu, H. Wang, J. Ding, Catal. Lett. 152 (2022) 3158–3167.
[21] G. Zhao, L. Hu, Y. Sun, X. Zeng, L. Lin, BioResources 9 (2014) 2634–2644.
[22] Yogita, B.S. Rao, Ch. Subrahmanyam, N. Lingaiah, New J. Chem. 45 (2021) 3224–3233.
[23] J.-P. Lange, W.D. van de Graaf, R.J. Haan, ChemSusChem 2 (2009) 437–441.
[24] K.Y. Nandiwale, A.M. Pande, V.V. Bokade, RSC Adv. 5 (2015) 79224–79231.
[25] P. Neves, P.A. Russo, A. Fernandes, M.M. Antunes, J. Farinha, M. Pillinger, M.F. Ribeiro, J.E. Castanheiro, A.A. Valente, Appl. Catal. Gen. 487 (2014) 148–157.
[26] R. Prajapati, S. Srivastava, G.C. Jadeja, J. Parikh, Waste Biomass Valorization 14 (2022) 609–618.
[27] X.-F. Liu, H. Li, H. Zhang, H. Pan, S. Huang, K.-L. Yang, S. Yang, RSC Adv. 6 (2016) 90232–90238.
[28] J. Yang, H. Zhang, Z. Ao, S. Zhang, Catal. Commun. 123 (2019) 109–113.
[29] H. Guo, Y. Hirosaki, X. Qi, R. Lee Smith, Renew. Energy 157 (2020) 951–958.
[30] A. Shokrolahi, A. Zali, H.R. Pouretedal, M. Mahdavi, Catal. Commun. 9 (2008) 859–863.
[31] D. Song, S. An, B. Lu, Y. Guo, J. Leng, Appl. Catal. B Environ. 179 (2015) 445–457.
[32] H. Chen, H. Ruan, X. Lu, J. Fu, T. Langrish, X. Lu, Chem. Eng. J. 333 (2018) 434–442.
[33] M. Li, J. Wei, G. Yan, H. Liu, X. Tang, Yong Sun, Xianhai Zeng, Tingzhou Lei, Lu Lin, Renew. Energy 147 (2020) 916–923.
[34] G. Zhao, M. Liu, X. Xia, L. Li, B. Xu, Molecules 24 (2019) 1881.
[35] X. Yu, L. Peng, Q. Pu, R. Tao, X. Gao, L. He, J. Zhang, Res. Chem. Intermed. 46 (2020) 1469–1485.
[36] W. Zhao, P. Salame, V. Herledan, F. Launay, A. Gédéon, T. Qi, J. Porous Mater. 17 (2010) 335–340.
[37] F. Zhou, J. Tang, Z. Fei, X. Zhou, X. Chen, M. Cui, X. Qiao, J. Porous Mater. 21 (2014) 149–155.
[38] K.A. Shah, J.K. Parikh, K.C. Maheria, Catal. Today 237 (2014) 29–37.
[39] S.M.L. dos Santos, K.A.B. Nogueira, M. de Souza Gama, J.D.F. Lima, I.J. da Silva Júnior, D.C.S. de Azevedo, Microporous Mesoporous Mater. 180 (2013) 284–292.
[40] H. Chaudhuri, S. Dash, A. Sarkar, Ind. Eng. Chem. Res. 56 (2017) 2943–2957.
[41] J.A. Janaun, T.J. Mey, A. Bono, D. Krishnaiah, Bull. Chem. React. Eng. Catal. 12 (2017) 41.
[42] M. Niakan, M. Masteri-Farahani, F. Seidi, Fuel 337 (2023) 127242.
[43] G. Wang, Z. Zhang, L. Song, Green Chem 16 (2014) 1436–1443.
[44] E.S. Sankar, K.S. Reddy, Y. Jyothi, B.D. Raju, K.S.R. Rao, Catal. Lett. 147 (2017) 2807–2816.
[45] X.-F. Liu, H. Li, H. Zhang, H. Pan, S. Huang, K.-L. Yang, S. Yang, RSC Adv. 6 (2016) 90232–90238.
[46] Z. Zhang, H. Yuan, Y. Wang, Y. Ke, J. Solid State Chem. 280 (2019) 120991.
[47] X. Li, Y. Li, X. Wang, Q. Peng, W. Hui, ·Aiyun Hu, H. Wang, Catal. Lett. 151 (2021) 2622–2630.
[48] Y. Zhang, X. Wang, T. Hou, H. Liu, L. Han, W. Xiao, J. Energy Chem. 27 (2018) 890–897.
[49] X. Kong, X. Zhang, C. Han, C. Li, L. Yu, J. Liu, Mol. Catal. 443 (2017) 186–192.