Fe3O4 Nanoparticles from FeSiAl Alloy of Spent Printed Circuit Boards and its Application in Dye Degradation
الموضوعات : Iranian Journal of CatalysisDinesh Patil 1 , M. Sridhara 2 , J. Manjanna 3 , Sandip Sabale 4
1 - Department of Chemistry, Rani Channamm a University, Belagavi 591 156, Karnataka, India
2 - Department of Chemistry, Rani Channamm a University, Belagavi 591 156, Karnataka, India
3 - Department of Chemistry, Rani Channamm a University, Belagavi 591 156, Karnataka, India
4 - P.G. Department of Chemistry, Jaysingpur College, Jaysingpur, 416 101, Maharashtra, India
الکلمات المفتاحية: Fe3O4, Citric acid and ascorbic acid, Spent PCBs, Soft magnetic FeSiAl cores,
ملخص المقالة :
Fe is an important element, used in soft magnetic materials (cores) in electrical and electronic devices and its concentration in e-waste is high. Thus, this study is aimed to recover Fe from the soft magnetic FeSiAl cores of spent printed circuit boards (PCBs). Here, the Fe-rich FeSiAl cores were identified, separated manually, and subjected to dissolution in citric acid (100 mM) and ascorbic acid (10 mM) mixture at 80 °C. The dissolved Fe was selectively precipitated as Fe3O4 using 20% NaOH in an N2 atmosphere at 90 °C for about 60 min. The obtained Fe3O4 shows ferromagnetic behavior with 30 emu/g saturation magnetization at 300 K. The BET surface area of Fe3O4 NPs was found to be 71.656 m2 g-1. Furthermore, the Fe3O4 NPs were utilized for methylene blue degradation with H2O2 in visible light irradiation. At optimum conditions, such as 10 ppm MB solution, 0.1 mL H2O2, and an S:L ratio of 0.05 g/L about 100% degradation was achieved in about 45 min under visible light irradiation and the correlated rate constant is 0.084 min-1. We believe that the synthesis of value-added compounds directly from the dissolution medium is an environmentally benign step toward resource recycling.
[1] F. Fiorillo, G. Bertotti, C. Appino, M. Pasquale, (1999).
[2] Y. Guo, J. Zhu, H. Lu, Z. Lin, Y. Li, IEEE Trans. Magn. 48 (2012) 3112-3115.
[3] H. Shokrollahi, K. Janghorban, J. Mater. Process. Technol. 189(1) (2007) 1-12.
[4] D. Mmereki, B. Li, A. Baldwin, L. Hong, E-waste transit.-from Pollut. to Resour. 2016.
[5] M. Farrokhi, S-C. Hosseini, J-K. Yang, S-S. Mehdi, Water Air Soil. Pollut. 225 (2014) 2113.
[6] N. Jaafarzadeh, A. Takdastan, S. Jorfi, F. Ghanbari, M. Ahmadi, G. Barzegar, J. Mol. Liq. 256 (2018) 462-470.
[7] E.S. Ngankam, D-Y. Lemankreo, B. Debina, A. Baçaoui, A. Yaacoubi, A.N. Rahman, Mater. Sci. appl. 11 (2020) 382-400.
[8] ReportLinker. Global textile dyes industry. Globe Newswire (2020). https://www.reportlinker.com/p05151463/?utm.
[9] Fibre2Fashion. Booming textile dyes industry in emerging economies. F2F NewsLetter (2014). doi:https://www.fibre2fashion.com/industry-article/7422/booming-textile-dyes-industry-in-emerging-economies
[10] J. Jiang, J. Zou, L. Zhu, L. Huang, H. Jiang, Y. Zhang, J. Nanosci. Nanotechnol. 11(6), (2011) 4793-4799.
[11] R. Vijayan, S. Joseph, B. Mathew, Bio. Nano. Sci. 8 (2018) 105–117.
[12] J. Liu, B. Wang, Z. Li, Z. Wu, K. Zhu, J. Zhuang, Q. Xi, Y. Hou, J. Chen, M. Cong, J. Li, G. Qian, Z. Lin, J. Alloys Compd. 771 (2019) 398–405.
[13] S. Xing, Z. Zhou, Z. Ma, Y. Wu, Appl. Catal. B 107 (2011) 386–392.
[14] G. Xie, P. Xi, H. Liu, F. Chen, L. Huang, Y. Shi, F. Hou, Z. Zeng, C. Shaob, J. Wang, J. Mater. Chem. 22 (2012) 1033-1039.
[15] Q. Wu, C. Feng, C. Wang, Z. Wang, Colloids Surf. B, 101 (2013) 210–214.
[16] Z. Wang, Y. Fan, R. Wu, Y. Huo, H. Wu, F. Wang, X. Xu, RSC Adv., 8 (2018) 5180-5188.
[17] H. Sun, L. Cao, L. Lu, Nano. Res., 4(6) (2011) 550–562.
[18] M.N. Pervez, W. He, T. Zarra, V. Naddeo, Y. Zhao, Water, 12(3) (2020) 733.
[19] D. Patil, M.B. Sridhara, J. Manjanna, G.P. Nayaka, S. Sabale, Ceram. Int., 48(23) (2022) 35848-35859.
[20] J. Basset, R.C. Denny, G.H. Jeffery, J. Mendham, “Vogel's textbook of quantitative inorganic analysis”, fourth ed. ELBS/Longman, London (1978).
[21] L. Huang, X. Liu, D. Chuai, Y. Chen, R. Yu, Sci. Rep., 6 (1) (2016) 35377.
[22] Z. Hou, P. Yan, B. Sun, H. Elshekh, B. Yan, Results Phys., 14 (2019) 102498.
[23] Y. Janu, D. Chaudhary, V. Chauhan, L. Saini, M.K. Patra, SN Appl. Sci., 2 (2020) 2–10.
[24] F. Azadi, A. Jashni, M.M. Zerafat, Ecotoxicol. Environ. Saf., 165 (15) (2018) 467-475.
[25] Y.P. Yew, K. Shameli, M. Miyake, N. Kuwano, N.B. Bt Ahmad Khairudin, S.E. Bt Mohamad, K.X. Lee, Nanoscale Res. Lett., 11 (2016) 276.
[26] S.R. Kumar, M. Paulpandi, M. Manivelraja, D. Mangalaraj, C. Viswanathan, S. Kannan, N. Ponpandian, RSC Adv., 4 (2014) 13409-13418.
[27] A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi, Appl. Catal. A Gen. 477 (2014) 83–92.
[28] M. Balakrishnan, R. John, Iran. J. Catal. 10(1) (2020) 1-16.
[29] M. Zebardast, A.F. Shojaei, K. Tabatabaeian, Iran. J. Catal. 8(4) (2018) 297-309.
[30] S. Zhang, W. Wu, X. Xiao, J. Zhou, F. Ren, C. Jiang, Nanoscale Res. Lett., 6 (2011) 89.
[31] A. Babuponnusami, K. Muthukumar, J. Environ. Chem. Eng., 2 (2014) 557–572.
[32] X. Yang, W. Chen, J. Huang, Y. Zhou, Y. Zhu, C. Li, Sci. Rep., 5 (2015) 10632.
[33] Y. Ahmed, Z. Yaakob, P. Akhtar, Catal. Sci. Technol., 6(1) (2016) 222–1232.
[34] D. Suresh, Udayabhanu, P.C. Nethravathi, K. Lingaraju, H. Rajanaika, S.C. Sharma, H. Nagabhushana, Spectrochim. Acta A, 136 (2015) 1467-1474, 2015.
[35] C. Anupama, A. Kaphle, Udayabhanu, G. Nagaraju, J. Mater. Sci. Mater. Electron, 29, (2018) 4238-4249.
[36] D. Patil, J. Manjanna, S. Chikkamath, V. Upper, M. Chougala, J. Hazard. Mater. Adv. 4 (2021) 100032.
[37] S. Harish, M. Navaneethan, J. Archana, A. Silambarasan, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa, Dalt. Trans. 44 (2015) 10490–10498.
[38] A. Pourtaheri, A. Nezamzadeh-Ejhieh, Spectrochim. Acta A Mol. 137 (2015) 338–344.
[39] K.M. Reza, A.S.W Kurny, F. Gulshan Appl. Water Sci. 7 (2017) 1569–1578.
[40] F.A. Aisien, N.A. Amenaghawon, E.F. Ekpenisi, J. Eng. Appl. Sci. 9 (2013) 11-16.
[41] N.K. Gupta, Y. Ghaffari, S. Kim, J. Bae, K.S. Kim, Md. Saifuddin, Sci. Rep. 10 (2020) 4942.
[42] B. Liu, L. Wen, K. Nakata, X. Zhao, S. Liu, T. Ochiai, T. Murakami, A. Fujishima, Chem. Eur. J. 18(40) (2012) 12705-12711.
[43] B. Manikandana, K.R. Muralib, R. Johna, Iran. J. Catal. 11(1) (2021) 1-11.
[44] M. Mehrali-Afjani, A. Nezamzadeh-Ejhieh, H. Aghaei, Chem. Phys. Lett. 759 (2020) 137873.
[45] A. Yousefi, A. Nezamzadeh-Ejhieh, Iran. J. Catal. 11(3), (2021), 247-259.