Catalytic oxidative desulfurization of dibenzothiophene by heterogeneous M2+/Al-layered double hydroxide (M2+ = Zn, Mg, Ni) modified zinc oxide
الموضوعات : Iranian Journal of CatalysisNur Ahmad 1 , Nova Yuliasari 2 , Fitri Arsyad 3 , Idha Royani 4 , Risfidian Mohadi 5 , Aldes Lesbani 6
1 - Graduate School of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia
2 - Graduate School of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia
3 - Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia
4 - Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia
5 - Graduate School of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia|Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia
6 - Graduate School of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia|Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia
الکلمات المفتاحية: Heterogeneous catalyst, dibenzothiophene, Reusability, Layered Double Hydroxide, Oxidative desulfurization,
ملخص المقالة :
In this study, the preparation of layered double hydroxide-metal oxide (ZnAl-ZnO, MgAl-ZnO, and NiAl-ZnO) was successful. The characterization of the catalyst used XRD, FTIR, and SEM analysis. The catalyst shows high oxidative desulfurization of dibenzothiophene. The percentage conversion of dibenzothiophene on ZnAl-ZnO, MgAl-ZnO, and NiAl-ZnO was 99.38%, 99.34%, and 99.90%, respectively. The acidities of ZnAl-ZnO, MgAl-ZnO, and NiAl-ZnO were 0.798, 2.469, and 0.184 mmol/g, respectively. The catalysts are heterogeneous systems, and the advantage is that they can be used for reusability. After 3 cycles of catalytic reactions at 323 K for 30 min, reusability proves that the percentage conversion of dibenzothiophene on ZnAl-ZnO, MgAl-ZnO, and NiAl-ZnO had a stable structure.
[1] X. N. Pham, B. M. Nguyen, H. T. Thi, H. van Doan, Adv. Pow.Tech. 29 (2018) 1827–1837.
[2] S. Mgidlana, T. Nyokong, Inor. Chim. Acta. 514 (2021) 119970.
[3] A. Bazyari, A. A. Khodadadi, A. H. Mamaghani, J. Beheshtian, L. Thompson, and Y. Mortazavi, Appl. Catal. B. 180 (2015) 65-77.
[4] X. Ren, G. Miao, Z. Xiao, F. Ye, Z. Li, H. Wang, J. Xiao, Fuel. 174 (2016) 118-125.
[5] R. S. Malani, A. H. Batghare, J. B. Bhasarkar, V. S. Moholkar, Bioresour. Tech. Rep. 14 (2021) 100668.
[6] S. Subhan, A. U. Rahman, M. Yaseen, H. U. Rashid, M. Ishaq, M. Sahibzada, Z. Tong, Fuel. 237 (2019) 793–805.
[7] M. Rezaee, F. Feyzi, M. R. Dehghani, J. Mol. Liq. 333 (2021) 115991.
[8] N. Kayedi, A. Samimi, M. A. Bajgirani, A. Bozorgian, S. Afr. J. Chem. Eng. 35 (2021) 153–158.
[9] Y. Cao, H. Wang, R. Ding, L. Wang, Z. Liu, B. Lv, Appl. Catal. A. Gen. 589 (2020) 117308.
[10] M. E. Manríquez-Ramírez, M. T. Valdez, L. v. Castro, M. E. Flores, E. Ortiz-Islas, Mater. Res. Bull. 153 (2022) 111864.
[11] F. Abedini, S. Allahyari, N. Rahemi, Appl. Surf. Sci. 569 (2021) 151086.
[12] V. Mahmoudi, A. M. Kermani, M. Ghahramaninezhad, A. Ahmadpour, Molecular. Catalysis. 509 (2021) 111611.
[13] M. L. Luna, M. A. Taboada-Ortega, M. A. Alvarez-Amparán, L. Cedeño-Caero, Catal. Today. 394-396 (2022) 336-347.
[14] H. Naseri, G. Mazloom, A. Akbari, F. Banisharif, Micro. Meso. Mat. 325 (2021) 111341.
[15] H. Yang, B. Jiang, Y. Sun, X. Tantai, X. Xiao, J. Wang, L. Zhang, Molecular. Catalysis. 448 (2018) 38–45.
[16] S. Kumar, V. C. Srivastava, R. P. Badoni, Fuel. Processing. Technol. 93 (2012) 18–25.
[17] P. Sikarwar, U. K. A. Kumar, V. Gosu, V. Subbaramaiah, J. Environ. Chem. Eng. 6 (2018) 1736–1744.
[18] M. Wu, B. Chang, T. T. Lim, W. da Oh, J. Lei, J. Mi, J. Hazard. Mater. 360 (2018) 391–401.
[19] S. Masoumi, S. A. Hosseini, Fuel. 277 (2020) 118137.
[20] T. Taher, R. Putra, N. R. Palapa, A. Lesbani, Chem. Phys. Lett. 777 (2021) 138712.
[21] L. Xiong, W. de Zhang, Q. S. Shi, A. P. Mai, Polym. Adv. Tech. 26 (2015) 495–501.
[22] X. Zhu, C. Chen, Q. Wang, Y. Shi, D. O’Hare, N. Cai, Chemical. Eng. J. 366 (2019) 181–191.
[23] B. Divband, A. Jodaie, M. Khatmian, Iranian. J. Catal. 9 (2019) 63-70.
[24] F. Iazdani, A. Nezamzadeh-Ejhieh, Envi. Sci. Poll. Res. 28 (2021) 53314–53327.
[25] K. A. Isai, V. S. Shrivastava, Iranian. J. Catal. 9 (2019) 259-268.
[26] S. Ghattavi, A. Nezamzadeh-Ejhieh, J. Mol. Liq. 322 (2021) 114563.
[27] C. Dang, W. Yang, J. Zhou, W. Cai, Appl. Catal. B. 298 (2021) 120547.
[28] A. Elhalil, R. Elmoubarki, A. Machrouhi, M. Sadiq, M. Abdennouri, S. Qourzal, N. Barka, J. Environ. Chem. Eng. 5 (2017) 3719–3726.
[29] S. Intachai, T. Nakato, N. Khaorapapong, Appl. Clay. Sci. 201 (2021) 105927.
[30] E. E. Abdel-Hady, R. Mahmoud, S. H. M. Hafez, H. F. M. Mohamed, J. Mater. Res. Tech. 17 (2022) 1922–1941.
[31] T. Li, L. Tan, Y. Zhao, Y. F. Song, Chem. Eng. Sci. 245 (2021) 116839.
[32] P. Polikarpova, A. Akopyan, A. Shlenova, A. Anisimov, Catal. Commun. 146 (2020) 106123.
[33] N. Ahmad, A. Wijaya, E. S. Fitri, F. S. Arsyad, R. Mohadi, A. Lesbani, Sci. Tech. Indo. 7 (2022) 385-391.
[34] M. Badaruddin, N. Ahmad, E. S. Fitri, A. Lesbani, R. Mohadi, Sci. Tech. Indo. 7 (2022) 492-499.
[35] L. Chen, X. Yang, Y. Tian, Y. Wang, X. Zhao, X. Lei, F. Zhang, Front. Energy. Res. 9 (2022) 810568.
[36] P. Basnet, D. Samanta, T. I. Chanu, J. Mukherjee, S. Chatterjee, SN. Appl. Sci. 1 (2019) 633.
[37] M. Zebardast, A. F. Shojaei, K. Tabatabaeian, Iranian. J. Catal. 8 (2018) 297-309.
[38] A. Noruozi, A. Nezamzadeh-Ejhieh, Chem. Phys. Lett. 752 (2020) 137587.
[39] N. Ahmad, F. S. Arsyad, I. Royani, A. Lesbani, Results. Chem. 4 (2022) 100629.
[40] H. Lv, H. Rao, Z. Liu, Z. Zhou, Y. Zhao, H. Wei, Z. Chen, J. Energy. Storage. 52 (2022) 104940.
[41] W. Trisunaryanti, S. D. Sumbogo, S. A. Novianti, D. A. Fatmawati, M. Ulfa, Y. L. Nikmah, Bull. Chem. Reac. Eng. Catal. 16 (2021) 881–887.
[42] D. Xie, Q. He, Y. Su, T. Wang, R. Xu, B. Hu, Chinese. J. Catal. 36 (2015) 1205–1213.
[43] A. Lesbani, A. Agnes, R. O. Saragih, M. Verawaty, R. Mohadi, H. Zulkifli, Bull. Chem. Reac. Eng. Catal. 16 (2015) 185-191.
[44] A. V. Akopyan, D. A Plotnikov, P. D. Polikarpova, A. A. Kedalo, S. V. Egazar’yants, A. V. Anisimiv, E. A. Karakhanov, Petro. Chem. 59 (2019) 975–978.
[45] L. Qiu, Y. Cheng, C. Yang, G. Zeng, Z. Long, S. Wei, K. Zhao, L. Luo, RSC. Adv. 6 (2016) 17036–17045.
[46] W. Jiang, D. Zheng, S. Xun, Y. Qin, Q. Lu, W. Zhu, H. Li, Fuel. 190 (2019) 1–9.
[47] S. O. Ribeiro, C. M. Granadeiro, P. L. Almeida, J. Pires, M. C. Capel-Sanchez, J. M. Campos-Martin, S. Gago, B. de. Castro, S.S. Balula, Catal. Today. 333 (2019) 226–236.
[48] L. Kang, H. Liu, H. He, C. Yang, Fuel. 234 (2018) 1229–1237.
[49] J. Ye, J. Wen, D. Zhao, P. Zhang, A. Li, L. Zhang, H. Zhang, M. Wu, Chinese. Chem. Let. 31 (2020) 2819–2824.
[50] B. N. Bhadra, J. Y. Song, N. A. Khan, S. H. Jhung, ACS. Appl. Mater. Interfaces. 9 (2017) 31192–31202.
[51] S. Mandizadeh, M. Sadri, M. Salavati-Niasari, Sep. Puri. Tech. 175 (2017) 399-405.