Improvement of Isopropyl Propionate Esterification Reaction using a Vapor Permeation Membrane Reactor
الموضوعات : Iranian Journal of Catalysis
1 - Department of Chemical Engineering, Islamic Azad University Shahreza Branch, Shahreza, Iran.
2 - Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran.
الکلمات المفتاحية: Heterogeneous catalyst, reaction, Isopropyl Propionate, PERVAP®2201,
ملخص المقالة :
In this study, a vapor permeation-integrated heterogeneous catalytic esterification reaction was investigated to improve the ester conversion of propionic acid and isopropanol. The reaction was carried out using Amberlyst 15 (Rohm & Haas) as a catalyst with different weight fractions of 3%, 4%, 10%, and 12% wt. relative to propionic acid. A hydrophilic PERVAP®2201 membrane (Sulzer) was used to remove water vapor from the glass reactor. Different molar ratios (1:1, 1.5:1, and 3:1) of alcohol to acid were used in the feed mixture. Applying the coupled membrane system, using 12wt.% of catalyst, increased the acid conversion from 39% (when no membrane was employed) to nearly 90% for three hours after the beginning of the process.
[1] M. Hosseini, E.Ameri, Vacuum. 141 (2017) 288-295.
[2] A. Atazadeh, E. Ameri, Polym. Bullet. 78 (2021) 5003-5028.
[3] A. Shameli, E. Ameri, Chem. Eng. J. 309 (2017) 381-396.
[4] B. Torabi, E. Ameri, Chem. Eng. J. 288 (2016) 461-472.
[5] M. Salahchini Javanmardi, E. Ameri, Polym. Bullet. 77 (2020) 2591-2609.
[6] E. Ameri, A. Moheb, Sh. Roodpeyma, Chem. Eng. J. 162 (2010) 355-363.
[7] E. Ameri, A. Moheb, Sh. Roodpeyma, Korean. J. Chem. Eng. 28 (2011) 1593-1598.
[8] K. Venkateswarlu, R. Sinha, R. J. Rao, Chem. Petrochem. J. (1976) 3–10.
[9] J.J. Mc Ketta, Encyclopedia of Chemical Processing and Design, Marcel Dekker, New York, 19 (1983) 381–402.
[10] M.S. Chen, R.M. Eng, J.L. Glazer, C.G.Wensley, U.S. Patent. 4 774 365 (1988).
[11] Staudt-Bickel C, Lichtenthaler R N, Proceedings of the International Congress on Membranes and Membrane Processes, ICOM''96, 1996, 394.
[12] P. Dakshinamurty, M.V.S. Ramarao, Ch.V.Ramachandramurty, J. Chem. Technol. Biotechnol. 34A (1984) 257–261.
[13] R. Roy, S. Bhatia, J. Chem. Technol. Biotechnol. 37 (1987) 1–10.
[14] H. Kasaini, L. Malherbe, R. Everson, K. Keizer, H. Neomagus, Sep. Sci. Technol. 40 (2005) 433-452.
[15] O.Iglesia, R. Mallada, M. Men´endez, J. Coronas, Chem. Eng. J. 131 (2007) 35-39.
[16] K.C.S. Figueiredo, V.M.M. Salim, C.P. Borges, Catal. Today. 133 (2008) 809-814.
[17] K. Wasewar, Sh. Patidar, V.K. Agarwal, Desalination. 243 (2009) 305-313.
[18] T. Uragami, M. Nishikawa, Asia-Pac. J. Chem. Eng. 5 (2010) 3-11.
[19] E. González Díaz, S. Álvarez-García, S. Luque, J. R. Álvarez, Membranes. 12 (2022) 96-112.
[20] H. Hasanudin, W. R. Asir, T. E. Muthiarani, D. Bahrain, F. Hadiah, J. Oil Palm Res., doi.org/10.21894/jopr.2022.0051.
[21] H. Hasanudin, Q. Utami Putri, T. Emilia Agustina, F. Hadiah, Pertanika J. Sci. Technol. 30 (2022) 377 - 395.
[22] M.B. Mandake, S.V. Anekar, S. M. Walke, Am. Int. J. Res. Sci. Technol. Eng. Math. 3 (2013) 114-121.
[23] Y. Han, E. Lv, L. Ma, J. Lu, K. Chen, J. Ding, Energy. Convers. Manage. 106 (2015) 1379-1386.
[24] Ó. De. la. Iglesia, S. Sorribas, E. Almendro, B. Zornoza, C. Téllez, J. Coronas, Renewable. Energy. 88 (2016) 12-19.
[25] S.H. Ali, S.Q. Merchant, Int. J. Chem. Kinet. 38 (2006) 593-612.
[26] W. Cha-umponga, M. Mayyasb, A. Amir Razmjo, V. Chen, Desalination. 516 (2021) 115-125.
[27] X. Zhan, R. Ge, Zh. Gao, T. Gao, L. Wang, J. Li, Separations. 9 (2022) 26-42.