Synthesis and Catalytic Performance of Ni/Silica Pillared Clay on HDPE Plastic Hydrocracking to Produce Liquid Hydrocarbons as Fuel
الموضوعات : Iranian Journal of CatalysisDarwanta Darwanta 1 , Wega Trisunaryanti 2 , Karna Wijaya 3 , Suryo Purwono 4
1 - Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Yogyakarta, Indonesia|Department of Chemistry, Faculty of Mathematics and Natural Sciences, Cenderawasih University, Jayapura, Indonesia
2 - Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Yogyakarta, Indonesia
3 - Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Yogyakarta, Indonesia
4 - Department of Chemical Engineering, Faculty of Engineering, Gadjah Mada University, Yogyakarta, Indonesia
الکلمات المفتاحية: Pillared clay, Plastic waste, silica pillars, HDPE hydrocracking, Ni catalyst,
ملخص المقالة :
Synthesis of Ni/SiPILC (Silica Pillared Clay) catalyst based on light fraction clay for hydrocracking of High-density Polyethylene (HDPE) plastics into liquid fuels has been carried out. The SiPILC was synthesized using CTAB and TEOS by varying the TEOS/clay mole ratio. The Ni metal was impregnated on the SiPILC with a variation of 2, 4, 6, and 8 wt% of Ni. Hydrocracking of HDPE plastic was carried out using catalysts in a semi-batch stainless steel reactor. The liquid cracking product was analyzed using GC-MS. The results showed that the clay consisted of Montmorillonite, Cristoballite, and Quartz minerals. The highest specific surface area of 571 m2/g was showed by the SiPILC treated by TEOS/clay mole ratio of 60. Ni 2%/SiPILC achieved the best performance catalyst with the highest acidity of 1.327 mmol/g that produced a liquid fraction of 45.50% (gasoline 55.03 % and diesel 44.96 %) at hydrocracking temperature 450 oC for 1.5 h. The Ni 2% /SiPILC catalyst still performed well after the fifth hydrocracking run, producing a liquid fraction of 41.08 %.
[1] Lebreton, L., Andrady, A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun, 5, (2019), 6.
[2] Prifti, K., Galeazzi, A. and Manenti, F., Design and Simulation of a Plastic Waste to Methanol Process Yield and Economics, Ind. Eng. Chem. Res, 62, (2023), 5083-5096,
[3] Mishra, R., Kumar, A., Singh, E. and Kumar, S., Recent Research Advancements in Catalytic Pyrolysis of Plastic Waste, Sustainable Chem. Eng. 11, (2023), 2033-2049.
[4] Ong, H.M., Veksha, A., Manh Ha, Q.L., Huang, J., Tsakadze, Z., and Lisak, G., Catalytic Activity and Coke resistance of Gasification Slag-Supported Ni Catalyst during Steam Reforming of Plastic Pyrolysis Gas, Sustainable Chem. Eng., 10, (2022), 17167-17176.
[5] John, D., Chukwuneke, C. E., Onuigbo, I. O., Yahaya, M. F., Agboola, B. O., Jahng, W. J. Low-temperature synthesis of kerosene- and diesel-range fuels from waste plastics using natural potash catalyst. Inter. J. Energy Environ. Eng., 12 (3) (2021), 531-541.
[6] Liu, M., Zhuo, J. K., Xiong, S. J., Yao, Q. Catalytic Degradation of High-Density Polyethylene over a Clay Catalyst Compared with Other Catalysts. Energy & Fuels, 28 (9) (2014), 6038-6045.
[7] Ashworth, D. C., Elliott, P., Toledano, M. B. Waste incineration and adverse birth and neonatal outcomes: a systematic review. Environ. Inter., 69 (2014), 120-132.
[8] Dobo, Z., Kecsmar, G., Nagy, G., Koos, T., Muranszky, G. and Ayari, M., Characterization of Gasoline-like Transportation Fuels Obtained by Distillation of Pyrolysis Oils from Plastic Waste Mixtures, Energy & Fuels, 35, (2021), 2347-2356
[9] Din, M. I., Sadaf, S., Hussain, Z., Khalid, R. Assembly of superparamagnetic iron oxide nanoparticles (Fe3O4-Nps) for catalytic pyrolysis of corn cob biomass. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects: (2020), 1-9.
[10] Borsodi, N., Miskolczi, N., Angyal, A., Bartha, L., Kohán, J., Lengyel, A., (2011), Hydrocarbons obtained by pyrolysis of contaminated waste plastics, 45th International Petroleum Conference, Bratislava, Slovak Republic
[11] Abbas-Abadi, M. S., Haghighi, M. N., Yeganeh, H. Evaluation of pyrolysis product of virgin high-density polyethene degradation using different process parameters in a stirred reactor. Fuel Processing Tech., 109 (2013), 90-95.
[12] Manos, G., Garforth, A., Dwyer, J. (Catalytic Degradation of High-Density Polyethylene on an Ultrastable-Y Zeolite. Nature of Initial Polymer Reactions, Pattern of Formation of Gas and Liquid Products, and Temperature Effects. Indust. Eng. Chem. Res., 39 (5) (2000), 1203-1208.
[13] Farajfaed, S., Sharifian, S., Asasian-Kolur, N., Sillanpää, M. Granular silica pillared clay for levofloxacin and gemifloxacin adsorption from aqueous systems. J. Environ. Chem. Eng., 9 (5) (2021), 106306.
[14] Li, B., Mao, H., Li, X., Ma, W., Liu, Z. Synthesis of mesoporous silica-pillared clay by intragallery ammonia-catalyzed hydrolysis of tetraethoxysilane using quaternary ammonium surfactants as gallery templates. J. Colloid Interface Sci., 336 (1): (2009) 244-249.
[15] Dincer, B. Y., Balcı, S., Tomul, F. In-situ mesoporous silica pillared clay synthesis and titanium and iron incorporation effect on structural properties. Micropor. Mesopor. Mater., 305 (2020), 110342.
[16] Han, Y.-S., Matsumoto, H., Yamanaka, S. Preparation of New Silica Sol-Based Pillared Clays with High Surface Area and High Thermal Stability. Chem. Mater., 9 (9): (1997), 2013-2018.
[17] Zhou, C., Li, X., Ge, Z., Li, Q., Tong, D. Synthesis and acid catalysis of nanoporous silica/alumina-clay composites. Catalysis Today, 93-95: (2004), 607-613.
[18] Chmielarz, L., Gil, B., Kuśtrowski, P., Piwowarska, Z., Dudek, B., Michalik, M. Montmorillonite-based porous clay heterostructures (PCHs) intercalated with silica–titania pillars—synthesis and characterization. J. Solid State Chem., 182 (5) (2009), 1094-1104.
[19] Sriningsih, W., Saerodji, M. G., Trisunaryanti, W., Triyono, Armunanto, R., Falah, I. I. Fuel Production from LDPE Plastic Waste over Natural Zeolite Supported Ni, Ni-Mo, Co and Co-Mo Metals. Procedia Environ. Sci., 20 (2014), 215-224.
[20] Yao, D., Yang, H., Chen, H., Williams, P. T. Co-precipitation, impregnation and so-gel preparation of Ni catalysts for pyrolysis-catalytic steam reforming of waste plastics. Appl. Catal. B: Environ, 239 (2018), 565-577.
[21] Qureshi, M.S., Nisar, S., Shah, R. And Salman, H., , Studies of Liquid Fuel Formation from Plastic Waste by Catalytic Cracking Over Modified Natural Clay and Nickel Nanoparticles, sci.Ind. res. Ser. A: Phys sci. 63A, (2020), 79-88
[22] Al-asadi, M., Miskolczi, N. Pyrolysis of polyethylene terephthalate containing real waste plastics using Ni loaded zeolite catalysts. IOP Conference Series: Earth and Environmental Science, 154 (1) (2018), 012021.
[23] Mangesh, V. L., Perumal, T., Subramanian, S., Padmanabhan, S. Clean Energy from Plastic: Production of Hydroprocessed Waste Polypropylene Pyrolysis Oil Utilizing a Ni–Mo/Laponite Catalyst. Energy & Fuels, 34 (7) (2020), 8824-8836.
[24] Ghaffar, N. F. A., Johari, A., Abdullah, T. A. T., Ripin, A. Catalytic Cracking of High-Density Polyethylene Pyrolysis Vapor over Zeolite ZSM-5 Towards Production of Diesel. IOP Conference Series: Mater. Sci. Eng., 808 (1) (2020), 012025.
[25] Geramian, M., Osacky, M., Ivey, D.G., Liu, Q. And Etsell, T.H., Effect of Swelling Clay Minerals ( Montmorillonite and Illite-Smectite) on Nonaqueous Bitumen Extraction from Alberta Oil Sands, Energy & Fuels, 30, (2016), 8083-8090.
[26] Barakan and Aghazadeh, synthesis and characterization of hierarchical porous clay heterostructure from Al, Fe-pillared nano bentonite using microwave and ultrasonic techniques, Micropor. Mesopor. Mater, 278, (2019), 138-148.
[27] Mao, H., Liu, X., Yang, J., Li, B., Chen, Q., Zhong, J. Fabrication of magnetic silica-pillared clay (SPC) nanocomposites with ordered interlayer mesoporous structure for controlled drug release. Micropor. Mesopor. Mater, 184 (2014), 169-176.
[28] Alandis, N. M., Mekhamer, W., Aldayel, O., Hefne, J. A. A., Alam, M. Adsorptive Applications of Montmorillonite Clay for the Removal of Ag(I) and Cu(II) from Aqueous Medium. J. Chem., 2019 (2019), 7129014.
[29] Ren, Z., Zhang, F., Yue, L., Li, X., Tao, Y., Zhang, G., Wu, K., Wang, C., Li, B. Nickel nanoparticles highly dispersed in pillared silica clay as an efficient catalyst for chlorobenzene dechlorination. RSC Adv., 5 (65): (2015), 52658-52666.
[30] Asgari, M., Vitale, G., Sundararaj, U. Synthesis and characterization of a novel nickel pillared–clay catalyst: In-situ carbon nanotube–clay hybrid nanofiller from Ni-PILC. Appl. Clay Sci., 205 (2021), 106064.
[31] Mao, H., Li, B., Yue, L., Wang, L., Yang, J., Gao, X. Aluminated mesoporous silica-pillared montmorillonite as acidic catalyst for catalytic cracking. Appl. Clay Sci., 53 (4) (2011), 676-683.
[32] Richardson, J. T., Scates, R., Twigg, M. V. X-ray diffraction study of nickel oxide reduction by hydrogen. Appl. Catal. A: General, 246 (1) (2003), 137-150.
[33] Aguado, J., Serrano, D. P., Escola, J. M., Briones, L. Deactivation and regeneration of a Ni supported hierarchical Beta zeolite catalyst used in the hydroreforming of the oil produced by LDPE thermal cracking. Fuel, 109 (2013), 679-686.
[34] Garrone, E., Fajula, F., Acidity and Basicity of Ordered Silica-based Mesoporous Materials, in Acidity and Basicity, Springer Berlin Heidelberg, Berlin, Heidelberg, (2008).
[35] Jystad, A., Leblanc, H., Caricato, M. Surface Acidity Characterization of Metal-Doped Amorphous Silicates via Py-FTIR and 15N NMR Simulations. J. Physic. Chem. C, 124 (28) (2020), 15231-15240.
[36] Eleeza, J., Boahene, P., Vedachalam, S., Dalai, A. K., Adjaye, J. Influence of Catalyst Acidity on Fine Particle Deposition during Hydrotreating of Bitumen-Derived Heavy Gas Oil. Energy & Fuels, 35 (20) (2021), 16735-16749.
[37] Sekewael, S. J., Wijaya, K., Triyono, T. Chemical modification of Montmorillonite K10 and its catalytic activity. Asian J. Chem., 32 (3) (2020), 659-664.
[38] Mao, H., Li, B., Li, X., Liu, Z., Ma, W. Mesoporous nickel-containing silica-pillared clays (Ni-SPC): Synthesis, characterization and catalytic behaviour for cracking of plant asphalt. Catal. Commun, 10 (6) (2009), 975-980.
[39] Lovás, P., Hudec, P., Jambor, B., Hájeková, E., Horňáček, M. Catalytic cracking of heavy fractions from the pyrolysis of waste HDPE and PP. Fuel, 203: (2017), 244-252.
[40] Gracida-Alvarez, U. R., Mitchell, M. K., Sacramento-Rivero, J. C., Shonnard, D. R. Effect of Temperature and Vapor Residence Time on the Micropyrolysis Products of Waste High-Density Polyethylene. Indust. Eng. Chem. Res., 57 (6) (2018), 1912-1923.
[41] Kumar, S., Singh, R. Recovery of hydrocarbon liquid from waste high-density polyethylene by thermal pyrolysis. Brazilian J. Chem. Eng., 28 (2011), 659-667.
[42] Artetxe, M., Lopez, G., Amutio, M., Elordi, G., Bilbao, J., Olazar, M. Light olefins from HDPE cracking in a two-step thermal and catalytic process. Chem. Eng. J., 207-208 (2012), 27-34.
[43] Panda A.K., Thermo-catalytic degradation of different plastics to drop in liquid fuel using calcium bentonite catalyst, Inter. J. Indust. Chem., 9, (2018), 167-176.
[44] Ding, W., Liang, J., Anderson, L. L. Hydrocracking and Hydroisomerization of High-Density Polyethylene and Waste Plastic over Zeolite and Silica−Alumina-Supported Ni and Ni−Mo Sulfides. Energy & Fuels, 11 (6) (1997), 1219-1224.
[45] Ibáñez, M., Artetxe, M., Lopez, G., Elordi, G., Bilbao, J., Olazar, M., Castaño, P. Identification of the coke deposited on an HZSM-5 zeolite catalyst during the sequenced pyrolysis–cracking of HDPE. Appl. Catal. B: Environ, 148-149 (2014), 436-445.
[46] López, A., de Marco, I., Caballero, B. M., Adrados, A., Laresgoiti, M. F. Deactivation and regeneration of ZSM-5 zeolite in catalytic pyrolysis of plastic wastes. Waste Management, 31 (8) (2011), 1852-1858.
[47] Kassargy, C., Awad, S., Burnens, G., Upreti, G., Kahine, K., Tazerout, M. Study of the effects of regeneration of USY zeolite on the catalytic cracking of polyethylene. Appl. Catal. B: Environ, 244 (2019), 704-708.