Magnetic Pomegranate Peel Extracts Modified Iron Oxide Nanocatalyst for Green and Selective Oxidation of Benzyl alcohols
الموضوعات : Iranian Journal of CatalysisSheyda Iranfar 1 , Hakimeh ziyadi 2 , Malak Hekmati 3 , Ensieh Ghasemi 4 , Davoud Esmaeili 5 , Pegah Haghighi 6
1 - Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
2 - Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
3 - Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
4 - Department of chemistry, Faculty of pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
5 - Department of Microbiology and Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
6 - Active Pharmaceutical Ingredients Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
الکلمات المفتاحية: Oxidation, catalyst, Pomegranate peel extract, Iron oxide nanoparticle,
ملخص المقالة :
The preparation and application of novel nanocatalysts for oxidation reaction via a simple, effective, green method remains a challenge; thus, in this study, a facile and eco-friendly approach is suggested to fabricate pomegranate peel extract (PPE) functionalized on silicate-coated Fe3O4 nanoparticles (Fe3O4@SiO2-PPE). The physicochemical characteristics of the magnetic Fe3O4@SiO2-PPE nanocomposite were evaluated using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. SEM images showed well-distributed nanoparticles in shape and size with a mean diameter of 42 nm. FT-IR and TEM images proved appropriate functionalization with pomegranate peel extract. The Fe3O4@SiO2-PPE nanocatalyst was found to be useful in the selective oxidation of benzyl alcohols to the relevant aldehydes/ketones without significant over oxidation and with good-to-excellent (about 95%) yields under solvent-free conditions at room temperature. The results revealed that the prepared catalyst was easily recovered and reused for five consecutive oxidation cycles without losing selectivity towards desired products in the benzyl alcohol oxidation.
[1] P. Piotrowski, J. Żukrowski, A. Kaim, New J. Chem. 44 (2020) 1971-1978.
[2] H. Alamgholiloo, S. Rostamnia, K. Zhang, TH. Lee, Y. Lee, R.S. Varma, H.W. Jang, M. Shokouhimehr, ACS omega. 5 (2020) 5182-5191.
[3] X. Yao, C. Bai, J. Chen, Y. Li, RSC Adv. 6 (2016) 26921-26928.
[4] M.N. Kopylovich, A.P. Ribeiro, E.C. Alegria, N.M. Martins, L.M. Martins, A.J. Pombeiro, Adv. Organomet. Chem. 63 (2015) 91-174.
[5] T. Mallat, A. Baiker, Chem. Rev, 104 (2004) 3037-3058.
[6] G.K. Kara, J. Rahimi, M. Niksefat, R. Taheri-Ledari, M. Rabbani, A. Maleki, Mater. Chem. Phys, 250 (2020) 122991-123005.
[7] K. Mori, T. Hara, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc. 126 (2004) 10657-66.
[8] E. Hammond-Pereira, K. Bryant, T.R. Graham, C. Yang, S. Mergelsberg, D.Wu, S.R. Saunders, React. Chem. Eng. 5 (2020)1939-1949.
[9] S. Meher, R.K. Rana, Green Chem. 21 (2019) 2494-2503.
[10] H. Göksu, H. Burhan, S.D. Mustafov, F. Şen, Scientific reports 10 (2020) 1-8.
[11] J. Xu, X.T. Yi, T. Zhao, L.Z. Wen, F. Wang, B. Xue, Mol. Catal. 511 (2021) 111749-111761.
[12] S. Ghorbani, R. Parnian, E. Soleimani, J. Organomet. Chem. 952 (2021) 122025- 122037.
[13] X. Yao, C. Bai, J. Chen, Y. Li, RSC Adv. 6 (2016) 26921-26928.
[14] F. Gao, Y. Zhang, Z. Wu, H. You, Y. Du, Coord. Chem. Rev. 436 (2021) 213825-213848.
[15] M.T. Räisänen, A. Al-Hunaiti, E. Atosuo, M. Kemell, M. Leskelä, T. Repo, Catal. Sci. Technol. 4 (2014) 2564-73.
[16] C. Parmeggiani, F. Cardona. Green Chem. 14 (2012) 547-564.
[17] X. Wang, X. Zhang, P. Li, K. Otake, Y. Cui, J. Lyu, M.D. Krzyaniak, Y. Zhang, Z. Li , J. Liu, C.T. Buru, J. Am. Chem. Soc. 141 (2019) 8306-8314.
[18] A.R. Judy-Azar, S. Mohebbi, J. Mol. Catal. A: Chem. 397 (2015) 158-165.
[19] B. Li, J. Hong, Y. Ai, Y. Hu, Z. Shen, S. Li, Y. Zou, S. Zhang, X. Wang, G. Zhao, X. Xu, J. Catal. 399 (2021)142-149.
[20] H. Ghasempour, F. ZareKarizi, A. Morsali, X. W. Yan. Appl. Mater. Today 24 (2021) 101157-101166.
[21] J. Rana, S.T. Sahoo, P. Daw, Tetrahedron 99 (2021) 132473.
[22] L. Geng, M. Zhang, W. Zhang, M. Jia,W. Yan, G. Liu, Catal. Sci. Technol. 5 (2015) 3097-3102.
[23] H.Y. Sun, Q. Hua, F.F. Guo, Z.Y. Wang, W.X. Huang,Adv. Synth. Catal.354 (2012) 569-73.
[24] S.S. Meng, L.R. Lin, X. Luo, H.J. Lv, J.L. Zhao, A.S. Chan, Green Chem. 21 (2019) 6187-6193.
[25] S. Wang, Z. Zhang, B. Liu,ACS Sustain. Chem. Eng. 3 (2015)406-412.
[26] E.M. Materón, C.M. Miyazaki, O. Carr, N. Joshi, P.H.S. Picciani, C. J. Dalmaschio, F. Davis, F.M. Shimizu. Appl. Surf. Sci. 6 (2021) 100163-100180.
[27] B.B. Mirjalili, F. Aref, Res. Chem. Intermed. 44 (2018) 4519-4531.
[28] L.M. Rossi, N.J Costa, F.P. Silva, R. Wojcieszak, Green Chem.216 (2014) 2906-33.
[29] S. Bagheri, F. Pazoki, L. Radfar, A. Heydari, Appl. Organomet. Chem. 34 (2020) e5447.
[30] Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Physc. D: Appl. Physc. 36 (2003) R167.
[31] S. Shukla, R. Khan, A. Daverey. Environ. Technol. Innov. 24 (2021) 101924-101942.
[32] M. Neamtu, C. Nadejde, V.D. Hodoroaba, R.J. Schneider, L. Verestiuc, U. Panne, Sci. Rep. 8 (2018) 1-1.
[33] M. Munoz, Z.M. De Pedro, J.A. Casas,J.J. Rodriguez, Appl. Catal B: Environ. 176 (2015) 249-65.
[34] Q. Gong, Y. Liu, Z. Dang, J. hazard. Mater. 371 (2019) 677-86.
[35] S.D. Roy, K.C. Das, S.S. Dhar, Inorg. Chem. Commun. 134 (2021) 109050.
[36] N. Zhu, H. Ji, P. Yu, J. Niu, M.U. Farooq, M.W. Akram, I.O. Udego, H. Li, X. Niu ,. Nanomaterials. 8 (2018) 810-837.
[37] A. Maleki, Tetrahedron. 68 (2012) 7827-33.
[38] E. Farzad, H. Veisi, J. Ind. Eng. Chem. 60 (2018) 114-24.
[39] L. Kannappan, R.Rajmohan, P. Edwin, Mater. Lett. 301 (2021) 130257-130261.
[40] O. Orgil, E. Schwartz, L. Baruch, I. Matityahu, J. Mahajna, R. Amir, LWT-FoodSci Technol. 58 (2014) 571-577.
[41] B. Singh, J.P. Singh, A. Kaur, N. Singh, Food chemistry. 261 (2018) 75-86.
[42] E.M. Alexandre, S. Silva, S.A. Santos, A.J. Silvestre, M.F. Duarte, J.A. Saraiva, Int. Food Res. 115 (2019) 167-176.
[43] I. Bibi, N. Nazar, S. Ata, M. Sultan, A. Ali, A. Abbas, et al, J. Mater. Res. Technol. 8 (2019) 6115-24.
[44] B. Şahin, A. Aygün, H. Gündüz, K. Şahin, E. Demir, S. Akocak, Colloids Surf B: Biointerfaces 163 (2018) 119-24.
[45] H. Yang, Y. Ren, T. Wang, C. Wang C, Results Phys. 6 (2016) 299-304.
[46] M. Ganeshkumar, M. Sathishkumar, T. Ponrasu, M.G. Dinesh, L. Suguna, Colloids Surf B: Biointerfaces. 106 (2013) 208-16.
[47] L. Sun, C. Huang, T. Gong, S. Zhou, Mater. Sci. Eng: C. 30 (2010) 583-9.
[48] S. Iranfar, M. Hekmati, H. Ziyadi, E. Ghasemi, D. Esmaeili, Inorg. Chem. Commun. 133 (2021) 108925-108933.
[49] E.A. Osborne, T.M. Atkins, D.A. Gilbert, S.M. Kauzlarich, K. Liu, A.Y. Louie, Nanotechnology. 23 (2012) 215602-215611.