Synthesis, characterization and using Fe3O4@SiO2@FeCl3 as a new nanocatalyst for aza-Michael reaction between amines and ethyl crotonate
الموضوعات : Iranian Journal of CatalysisHamid Parsa 1 , Mohammad Javad Taghizadeh 2 , Mojtaba Mossavi 3 , Jaber Hosseini 4
1 - Department of Chemistry, Faculty of Science, Imam Hossein University, Tehran 16597, Iran.
2 - Department of Chemistry, Faculty of Science, Imam Hossein University, Tehran 16597, Iran.
3 - Department of Chemistry, Faculty of Science, Imam Hossein University, Tehran 16597, Iran.
4 - Department of Chemistry, Faculty of Science, Imam Hossein University, Tehran 16597, Iran.
الکلمات المفتاحية: Aza-Michael reaction, Fe3O4@SiO2@FeCl3 nanocatalyst, α, β-Unsaturated carbonyl compounds,
ملخص المقالة :
In this article, recyclable Fe3O4@SiO2@FeCl3 was synthesized and entirely characterized by various techniques including XRD, FT-IR, SEM, EDX and VSM analysis. The catalytic ability of produced Fe3O4@SiO2@FeCl3 was studied in the aza-Michael reaction of diethyl amine and ethyl crotonate which lead to high yield of product. Also, this procedure was used to synthesize other derivatives resulted from different amines. Synthesized Fe3O4@SiO2@FeCl3 nanocatalyst has some great advantages such as easy preparation method, simple recovery and high efficiency.
[1] I. T. Horvath, P. T. Anastas, Chem. Rev. 107 (2007) 2169-2173.
[2] Y. Hayashi, J. J. Rode, E. J. Corey, J. Am. Chem. Soc. 118 (1996) 5502-5503.
[3] B. Chertok, A.E. David, B.A. Moffat, V. C. Yang, Biomaterials 30 (2009) 6780-6787.
[4] D. K. Kim, M. Mikhaylova, F. H. Wang, J. Kehr, B. Bjelke, Y. Zhang, T. Tsakalakos, M. Muhammed, Chem. Mater. 15 (2003) 4343-4351.
[5] V. Polshettiwar, R. S. Varma, Tetrahedron 66 (2010) 1091-1097.
[6] S. Verma, S. L. Jain and B. Sain, Org. Biomol. Chem. 9 (2011) 2314-2318.
[7] R. Kumar, P. Chaudhary, S. Nimesh, R. Chandra, Green Chem. 8 (2006) 356-358.
[8] J. S. Yadav, B. V. S. Reddy, A. K. Basak , A. V. Narsaiah, Chem. Lett. 32 (2003) 988-989.
[9] P. Phukan, R. Borah, K. J. Borah, Indian J. Chem. 51 (2012) 1163-1167.
[10] H. Y. Park, M. J. Schadt, L. Y. Wang, I. I. S. Lim, P. N. Njoki, S. H. Kim, M. Y. Jang, J. Luo, C.J. Zhong, Langmuir 23 (2007) 9050-9056.
[11] Z. L. Liu, X. Wang, G. H. Du, L. QH, D. ZH, J. Mater. Sci. 39 (2004) 2633-2636.
[12] C. Corot, P. Robert, J. Idee, M. Port, Adv. Drug Deliv. Rev. 58 (2006) 1471-1504.
[13] Y. Ma, C. Hou, H. Zhang, Q. Zhang, H. Liu, S. Wu, Z. Guo, Electrochim. Acta, 315 (2019) 114-123.
[14] H. Cai, J. Feng, S. Wang, T. Shu, Z. Luo, S. Liu, Food Chem. 283 (2019) 530-538.
[15] G. Mohammadi Ziarani, H. Vojoudi, Z. Kheilkordi, A. Badiei, Iran. J. Catal. 10 (1) 2020, 65-70.
[16] Y. Wang, L. Wang, T. Tian, X. Hu, C. Yang, Q. Xu. Analyst 137 (2012) 2400-2405. [17] S. Kobayashi, K. Kakumoto, M. Sugiura, Org. Lett. 4 (2002) 1319-1322.
[18] S. Kim, S. Kang, G. Kim, Y. Lee, J. Org. Chem. 18 (2016) 4048−4057.
[19] S. Verma, H. P. Mungse, N. Kumar, S. Choudhary, S. L. Jain, B. Sain, O. P. Khatri, Chem Comm. 47 (2011) 12673-12675.
[20] J. Cabral, P. Laszlo, L. Mahé, M.-T. Montaufier, S. L. Randriamahefa, Tetrahedron Lett. 30 (1989) 3969-3972.
[21] V. R. Choudhary, D. K. Dumbre, S. K. Patil, RSC Adv. 2 (2012) 7061-7065.
[22] L. V. R. Babu Syamala, R. G. Bhat, Tetrahedron Lett. 58 (2017) 4836-4840.
[23] D. Zareyee, S. M. Moosavi, A. Alaminezhad, J. Mol. Catal. A: Chem. 378 (2013) 227-231.
[24] M. M. Hashemi, B. Eftekhari-Sis, A. Abdollahifar, B. Khalili, Tetrahedron 62 (2006) 672-677.