Inactivation of Fecal coliforms during solar and photocatalytic disinfection by zinc oxide (ZnO) nanoparticles in compound parabolic concentrators (CPCs)
الموضوعات : Iranian Journal of CatalysisAhmadreza Yazdanbakhsh 1 , Kourosh Rahmani 2 , Hasan Rahmani 3 , Mansour Sarafraz 4 , Masoumeh Tahmasebizadeh 5 , Ayat Rahmani 6
1 - Department of Environmental Health Engineering, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
2 - Department of Environmental Health Engineering, Mamasani Higher Eduction Complex for Health, Shiraz University of Medical Sciences, Shiraz, Iran.
3 - Department Environmental Health, Kashan University of Medical Sciences, Kashan, Iran.
4 - Department of Environmental Health Engineering, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
5 - Research Center for Health Sciences and Technologies, Semnan University of Medical Sciences, Semnan, Iran.
6 - Research Center for Health Sciences and Technologies, Semnan University of Medical Sciences, Semnan, Iran.
الکلمات المفتاحية: Nano photocatalyst, Compound parabolic concentrators (CPCs), Solar disinfection, Fecal coliforms,
ملخص المقالة :
Water samples of 0, 50, and 100 nephelometric turbidity units (NTU) spiked with fecal coliforms (107 CFU/ml) were exposed to natural sunshine in 1l quartz glass tubes fitted with rectors’ compound parabolic concentrators CPCS at two forms CPC1 (whit nanoparticle zinc oxide) and CPC2(without nanoparticle zinc oxide). The samples were characterized using the X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM). On clear days, the complete inactivation times (more than 7-log unit reduction in bacterial population) in the systems with CPC1, and CPC2 were 15, and 30 min, respectively. The maximum temperatures obtained in the water samples were 80 for CPC1, and 82 for CPC2. The use of CPC1 with hydroxyl radicals (OH•) production significantly improved the efficiency of the old CPCS technique, since these systems (CPC1-2) shortened the exposure times to solar radiation and also minimized the negative effects of turbidity and also regrowth was zero in the disinfected samples. Due to two simultaneous effects of high temperatures and UV, regrowth in most ways of solar disinfection was not seen in these examples. Overall, this technology has been proved to be a good enhancement method to inactivate microorganisms under real conditions and represents a good alternative technique to drinking water treatment.
[1] J. Lonnen, S. Kilvington, S. Kehoe, F. Al-Touati, K. McGuigan, Water. Res. 39 (2005) 877-883.
[2] E. Alonso, A. Santos, P. Riesco, Fresenius Environ. Bulletin. 14 (2005) 322-326.
[3] S.C. Eleren, U. Alkan, A. Teksoy, Fresenius Environ. Bulletin. 23 (2014) 1397-1406.
[4] A. Yazdanbakhsh, A. Rahmani, M. Massoudinejad, M. Jafari, M. Dashtdar, Desalin. Water Treat. 57 (2016) 23719-23727.
[5] R. Khaengraeng, R. Reed, J. Appl. Microbiol. 99 (2005) 39-50.
[6] P.M. Oates, P. Shanahan, M.F. Polz, Water. Res. 37 (2003) 47-54.
[7] S. Malato, P. Fernández-Ibáñez, M. Maldonado, J. Blanco, W. Gernjak, Catal. Today 147 (2009) 1-59.
[8] B. Khodadadi, Iran. J. Catal. 6 (2016) 305-311.
[9] M. Pirhashemi, A. Habibi-Yangjeh, Mater. Chem. Phys. 214 (2018) 107-119.
[10] H.R. Pouretedal, M. Fallahgar, F. Sotoudeh Pourhasan, M. Nasiri, Iran. J. Catal. 7 (2017) 317-326.
[11] L. Shabani, H. Aliyan, Iran. J. Catal. 6 (2016) 221-228.
[12] M. Pirhashemi, A. Habibi-Yangjeh, Ceram. Inter. 43 (2017) 13447-13460.
[13] A. Besharati-Seidani, Iran. J. Catal. 6 (2016) 447-454.
[14] J. Esmaili-Hafshejani, A. Nezamzadeh-Ejhieh, J. Hazard. Mater. 316 (2016) 194-203.
[15] M.H. Fallah, Iran. J. Catal. 6 (2016) 281-292.
[16] N. Ajoudanian, A. Nezamzadeh-Ejhieh, Mater. Sci. Semi. Proc. 36 (2015) 162-169.
[17] A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C 1 (2000) 1-21.
[18] C. Avşar, I. Berber, Fresenius Environ. Bull. 23 (2014) 2481-2487.
[19] Y. Jiao, W. Ge, R. Qin, B. Sun, W. Jiang, D. Liu, Fresenius Environ. Bull. 21 (2012) 1375-1384.
[20] D.M. Blake, P.C. Maness, Z. Huang, E.J. Wolfrum, J. Huang, W.A. Jacoby, Sep. Purif. Methods 28 (1999) 1-50.
[21] Y. Abdollahi, A.H. Abdullah, Z. Zainal, N.A. Yusof, Fresenius Environ. Bull. 21 (2012) 256-262.
[22] Z.-D. Meng, S.-B. Jo, L. Zhu, K. Ullah, S. Ye, W.-C. Oh, Fresenius Environ. Bull. 24 (2015) 481-491.
[23] M. Tabatabaee, A. Ghotbifar, A.A. Mozafari, Fresenius Environ. Bull. 21 (2012) 1468-1473.
[24] X. Zhang, K. Yan, D. Ren, H. Wang, Fresenius Environ. Bull. 16 (2007) 632-638.
[25] M. Ahmadi, K. Rahmani, A. Rahmani, H. Rahmani, Pol. J. Chem. Technol. 19 (2017) 104-112.
[26] M. Farzadkia, K. Rahmani, M. Gholami, A. Esrafili, A. Rahmani, H. Rahmani, Korean. J. Chem. Eng. 31 (2014) 2014–2019.
[27] M. Gholami, K. Rahmani, A. Rahmani, H. Rahmani, A. Esrafili, Desalin. Water Treat. 57 (2016) 13878-13886.
[28] K. Sunada, T. Watanabe, K. Hashimoto, J. Photochem. Photobiol. A 156 (2003) 227-233.
[29] K. Sivagami, R.R. Krishna, T. Swaminathan, Sol. Energy 103 (2014) 488-493.
[30] M. Chaudhuri, H. Zuhali, A.C. Affam, Int. J. Photoenergy 2013 (2013) Article ID 435017.
[31] C. Shifu, C. Gengyu, Sol. Energy. 79 (2005) 1-9.
[32] K. Sivagami, R. Ravi Krishna, T. Swaminathan. Sol. Energy. 103 (2014) 488-493.
[33] J.-J. Feng, Q.-C. Liao, A.-J. Wang, J.-R. Chen, CrystEngComm 13 (2011) 4202-4210.
[34] R.K. Oshiro, Method 1604: Total Coliforms and Escherichia coli in Water by Membrane Filtration Using a Simultaneous Detection Technique (MI Medium), Environmental Protection Agency, Washington D.C., 2002.
[35] H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Mol. Catal. A: Chem. 426 (2017) 158-169.
[36] S. Aghabeygi, R. Kia Kojoori, H. Vakili Azad, Iran. J. Catal. 6 (2016) 275-279.
[37] M. Babaahamdi-Milani, A. Nezamzadeh-Ejhieh, J. Hazard. Mater. 318 (2016) 291-301.
[38] L.S. Roselin, R. Selvin, Sci. Adv. Mater. 3 (2011) 251-258.
[39] B. Khodadadi, M. Bordbar, Iran. J. Catal. 6 (2016) 37-42.
[40] A. Nezamzadeh-Ejhieh, M. Bahrami, Desalin. Water Treat. 55 (2015) 1096-1104.
[41] M. Pirhashemi, A. Habibi-Yangjeh, Sep. Purif. Technol. 193 (2018) 69-80.
[42] K. McGuigan, T. Joyce, R. Conroy, J. Gillespie, M. Elmore-Meegan, J. Appl. Microbiol. 84 (1998) 1138-1148.
[43] B. Sommer, A. Marino, Y. Solarte, M. Salas, C. Dierolf, C. Valiente, D. Mora, R. Rechsteiner, P. Setter, W. Wirojanagud, Aqua 46 (1997) 127-137.
[44] S. Kehoe, T. Joyce, P. Ibrahim, J. Gillespie, R. Shahar, K. McGuigan, Water Res. 35 (2001) 1061-1065.
[45] M. Fontán-Sainz, H. Gómez-Couso, P. Fernández-Ibáñez, E. Ares-Mazás, Am. J. Trop. Med. Hyg. 86 (2012) 223-228.
[46] H. Gómez-Couso, M. Fontán-Sainz, K.G. McGuigan, E. Ares-Mazás, Acta Trop. 112 (2009) 43-48.
[47] H. Gómez‐Couso, M. Fontán‐Saínz, C. Sichel, P. Fernández‐Ibáñez, E. Ares‐Mazás, Trop. Med. Int. Health 14 (2009) 620-627.
[48] H. Gómez-Couso, M. Fontán-Sainz, E. Ares-Mazás, Am. J. Trop. Med. Hyg. 82 (2010) 35-39.