Layered double hydroxides: Novel nanocatalysts for combustion of gaseous toluene from polluted air
الموضوعات : Iranian Journal of CatalysisSepideh Naghel-Danaei 1 , Seyed Ali Hosseini 2 , Aligholi Niaei 3
1 - Department of Applied Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
2 - Department of Applied Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
3 - Faculty of Petroleum and Chemical Engineering, University of Tabriz, Tabriz, Iran.
الکلمات المفتاحية: air pollution, Toluene, Nanocatalyst, Layered double hydroxides, Catalytic oxidation,
ملخص المقالة :
The catalytic performance of Ni-Al, Mg-Al, and Co-Ni LDHs as novel nanocatalysts was evaluated in the oxidation of toluene. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The XRD and FTIR approved the structure and functional groups of the LDH, respectively. Also, the presence of cations with different oxidation state confirmed by XRD. According to this result, Mars Van Krevelen (MVK) mechanism was suggested for the combustion of toluene over the LDH nanocatalysts. The SEM results indicated that the nanostructure and layered morphology of the catalysts. All LDHs exhibited catalytic activity for toluene oxidation. T80 (temperature for 80% conversion for toluene) for Co-Ni, Ni-Al and Mg-Al LDH catalysts were 225, 277 and 350 °C, respectively. So, the Co-Ni LDH showed the highest activity. Furthermore, Ni-Al LDH exhibited the highest thermal stability. So, we concluded that Ni-Al LDH is a superior catalyst for toluene oxidation in the studied series.
[1] S.A. Hosseini, M.C. Alvarez-Galvan, J.L.G. Fierro, A. Niaei, D. Salari, Ceram Int. 39 (2013) 9253-9261.
[2] S Uchiyama, S Hasegawa, Environ Sci Technol. 34 (2000) 4656-4661.
[3] S.K Kjaergaard, L Molhave, O. Pedersen, Atmos Environ, Part A. 25 (1991)1417-1426.
[4] CY Chao, GY Chan, Atmos Environ 35 (2001) 5895-5913.
[5] S.A. Hosseini, A. Niaei, D. Salari, S.R. Nabavi, Ceram Int. 38 (2012) 1655-1661.
[6] MA Alvarez-Merino, MF Ribeiro, JM Silva, F. Carrasco-Marin, FJ Maldonado Hodar, Environ Sci Technol 38 (2004) 4664-4670.
[7] K. Everaert, J. Baeyens, J Hazard Mater. 109 (2004) 113-139.
[8] A. O'Reilly, Process Saf. Environ Prot 76 (1998) 302-312
[9] F Cavani, F. Trifiro, A. Vaccari, Catal. Today 11 (1991) 173-301.
[10] A Vaccari, Appl. Clay Sci. 14 (1999) 161-198.
[11] B.F. Sels, D.E. De Vos, P.A. Jacobs, Catal. Rev. Sci. Eng. 43 (2001) 443-488.
[12] R. Bastiani, I.V. Zonno, I.A.V. Santos, C.A. Henriques, J.F.L. Monteiro, Braz. J. Chem. Eng. 21(2004) 193-202.
[13] K.T. Ehlsissen, A. Delahaye-Vidal, P. Genin, M. Figlarz, P. Willmann, J. Mater. Chem. 3 (1993) 883-888.
[14] F. Li, J. Liu, D.G. Evans, X. Duan, Chem. Mater. 16 (2004) 1597-1602.
[15] F. Millange, R.I. Walton, L.X. Lei, D. O'Hare, Chem. Mater. 12 (2000) 1990-1994.
[16] L. Van der Ven, M. Van Gemert, L. Batenburg, J. Keern, L. Gielgens, T. Koster, H. Fischer, Appl. Clay Sci. 17 (2000) 25-34.
[17] M. Lenarda, M. Casagrande, E. Moretti, L. Storaro, R. Frattini, S. Polizzi, Catal. Lett. 114 (2007) 79-84.
[18] M.K. Ram Reddy, Z.P. Xu, G.Q. Lu, J.C. Diniz da Costa, Ind. Eng. Chem. Res. 47 (2008) 7357-7360.
[19] J.H. Choy, J.S. Jung, J.M. Oh, M. Park, J. Jeong, Y.K. Kang, O.J. Han, Biomater 25 (2004) 3059-3064.
[20] J.H. Choy, S.J. Choi, J.M. Oh, T. Park, Appl. Clay Sci. 36 (2007) 122-132.
[21] J.M. Oh, S.J. Choi, S.T. Kim, J.H. Choy, Bioconjug. Chem. 17 (2006) 1411-1417.
[22] Z. Liu, R. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, J. Am. Chem. Soc. 128 (2006) 4872-4880.
[23] J.L. Gunjakar, T.W. Kim, H.N. Kim, I.Y. Kim, S.J. Hwang, J. Am. Chem. Soc. 133 (2011) 14998-15007.
[24] E. Genty, J Brunet, C. Poupin, S. Casale, S. Capelle, P. Massiani, S. Siffert, R Cousin, Catal, 5 (2015) 851-867.
[25] W. Wang, Z. Xu, Z. Guo, C. Jiang, W. Chu, Chin. J. Catal. 36 (2015) 139–147.
[26] G. Fan, F. Li, D.G. Evans, X. Duan, Chem. Soc. Rev., 43 (2014) 7040-7066
[27] W. Wanga , N. Zhanga , Z. Shia , Z. Yeb , Q. Gaoa , M. Zhia, Z. Hong, Chem. Eng. J., 338 (2018) 55-61
[28] S.A. Hosseini, M. Davodian, A.R. Abbasian, J. Taiwan Inst Chem. Eng 75 (2017) 95-104.
[29] A. Obadiah, R. Kannan, P. Ravichandran, A. Ramasubbu, S. Vasanth kumar, Dig. J. Nanomater Bios., 7 (2012) 321 – 327
[30] M. Li, F. Liu, J.P. Cheng, J. Ying, X.B. Zhang, J. Alloy Compd. 635 (2015) 225–232.
[31] T. Wang, W. Xu, H. Wang, Electrochim Acta, 257 (2017) 118-127
[32] Q. Wang, D. O’Hare Chem. Rev., 112 (2012) 4124-4155.
[33] J.Liang, R. Ma, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, Chem. Mater. 22 (2010) 371-378.
[34] B.J. Waghmode, A.P. Gaikwad, C.V. Rode, S.D. Sathaye, K.R. Patil, D.D. Malkhede ACS Sustain Chem. Eng. 6 (2018) 9649-9660
[35] R. Ma, J. Liang, K. Takada, T. Sasaki, J. Am. Chem. Soc. 133 (2011) 613-520
[36] M.H. Habibi, E. Askari, Iran. J. Catal. 1 (2011) 41-44.
[37] S. Aghdasi, M. Shokri, Iran. J. Catal. 6, 2016, 481-487.
[38] S. D. Khairnar, M. R. Patil, V. S. Shrivastava, Iran. J. Catal. 8(2) (2018) 143-150
[39] M. Shabanian, N. Basaki, H.A. Khonakdar, S.H. Jafari, K. Hedayati, U. Wagenknecht , Appl. Clay Sci. 90 (2014) 101-108.
[40] S. Mo, S. Li, W. Li, J. Li, J. Chen, Y. Chen, J. Mater. Chem. A, 4 (2016) 8113–8122.
[41] E. Genty, J. Brunet, C. Poupin, S. Casale, S. Capelle, P. Massiani, S. Siffert, R. Cousin, Catal. 5 (2015) 851–867.
[42] H. C. Genuino, S. Dharmarathna, E. C. Njagi, M. C. Mei, S. L. Suib, J. Phys. Chem. C, 116 (2012) 12066–12078.