Non-oxidative conversion of methane to aromatics over modified zeolite catalysts by transitional metals
الموضوعات : Iranian Journal of CatalysisElmira Yaghinirad 1 , Hassan Aghdasinia 2 , Ali Naghizadeh 3 , Aligholi Niaei 4
1 - Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran.
2 - Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran.
3 - Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran.
4 - Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran.
الکلمات المفتاحية: Natural gas, Dehydro-aromatization, HZSM-5 metal-modified catalyst, Nonoxidative-conversion,
ملخص المقالة :
The activity of different transitional metals over modified H-ZSM-5 catalysts for methane conversion to aromatics was compared. The first group of catalysts was Mo-impregnated H-ZSM-5 zeolites with 1, 3 and 6 wt% of Mo. The second group was M(3 wt%)- impregnated H-ZSM-5 (M: Ag, Cd, Cr, Mo, Zn and Mn). The catalytic activity of the first group was investigated at 600, 700 and 800 °C and gas hourly space velocity (GHSV) of 1500, 2250, 3600 [ml.g-1.h-1]. Likewise, the second group of catalysts was examined at 700°C and GHSV of 2250 [ml.g-1.h-1]. The catalyst samples were appropriately characterized by XRD, BET and SEM techniques. The effect of loaded transitional metals on the methane conversion was sorted on the basis of benzene yield as following: 3%wt Mo> 3%wt Zn> 3%wt Mn> 3%wt Ag> 3%wt Cd > 3%wt Cr. The highest methane conversion was 11.13% obtained over the Mo(3 wt%)-impregnated HZSM-5 catalyst.
[1] A.V. Vosmerikov, V.I. Zaykovskii, L.L. Korobitsyna, E.G. Kodenev, V.V. Kozlov, G.V. Echevskii, Stud. Surf. Sci. Catal. 162 (2006) 913-920.
[2] Y. Shu, M. Ichikawa, Catal. Today 71 (2001) 55-67.
[3] J.H. Lunsford, Catal. Today 63 (2000) 165-174.
[4] K. Skutil, M. Taniewski, Fuel Process. Technol. 87 (2006) 511-521.
[5] D. Noon, B. Zohour, S. Senkan, J. Nat. Gas Sci. Eng. 18 (2014) 406-411.
[6] H.L. Mitchell III, R.H. Waghorne, U.S. Patent 4239658, 1980.
[7] S. Majhi, P. Mohanty, H. Wang, K. Pant, J. Energy Chem. 22 (2013) 543-554.
[8] L. Wang, L. Tao, M. Xie, G. Xu, J. Huang, Y. Xu, Catal. Lett. 21 (1993) 35-41.
[9] S. Ma, X. Guo, L. Zhao, S. Scott, X. Bao, J. Energy Chem. 22 (2013) 1-20.
[10] Z. Yang, A. Kumar, A. Apblett, J Anal. Appl. Pyrol. 120 (2016) 484-492.
[11] J.-P. Tessonnier, B. Louis, S. Rigolet, M.J. Ledoux, C. Pham-Huu, Appl. Catal. A 336 (2008) 79-88.
[12] W. Liu, Y. Xu, J. Catal. 185 (1999) 386-392.
[13] H. Liu, W. Shen, X. Bao, Y. Xu, J. Mol. Catal. A: Chem. 244 (2006) 229-236.
[14] F. Solymosi, J. Cserényi, A. Szöke, T. Bánsági, A. Oszko, J. Catal. 165 (1997) 150-161.
[15] F. Solymosi, A. Erdöhelyi, A. Szöke, Catal. Lett. 32 (1995) 43-53.
[16] A. Szöke, F. Solymosi, Appl. Catal. A 142 (1996) 361-374.
[17] D. Wang, J.H. Lunsford, M.P. Rosynek, Top. Catal. 3 (1996) 289-297.
[18] D. Wang, J.H. Lunsford, M.P. Rosynek, J. Catal. 169 (1997) 347-358.
[19] S. Liu, L. Wang, R. Ohnishi, M. Ichikawa, J. Catal. 181 (1999) 175-188.
[20] M. Rahman, A. Sridhar, S.J. Khatib, Appl. Catal. A 558 (2018) 67-80.
[21] Y. Shu, D. Ma, L. Xu, Y. Xu, X. Bao, Catal. Lett. 70 (2000) 67-73.
[22] H. Liu, S. Yang, S. Wu, F. Shang, X. Yu, C. Xu, J. Guan, Q. Kan, Energy 36 (2011) 1582-1589.