Oxidation of greenhouse gases, CH4 and CO, over LaMnxNi1-xO3±δ mixed oxide
الموضوعات : Iranian Journal of CatalysisFarhad Banisharif 1 , Mohammad Reza Dehghani 2 , Golshan Mazloom 3 , Yahya Hojatpanah 4
1 - Chemical Engineering Department, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran.
2 - Chemical Engineering Department, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran.
3 - Department of Chemical Engineering, Faculty of Engineering, University of Mazandaran, Babolsar, Iran.
4 - Chemical Engineering Department, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran.
الکلمات المفتاحية: Greenhouse gas, CO oxidation, Perovskite mixed oxide, LaMnxNi1-xO3±δ, Methane combustion,
ملخص المقالة :
The performance of LaMnxNi1-xO3±δ perovskite mixed oxides (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) which were prepared by different methods, the Pechini and sol-gel methods in the oxidation of greenhouse gases, CH4 and CO, has been investigated. All samples were characterized using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and N2 adsorption. The results showed that Pechini samples are more active and stable than the sol-gel samples. The partially substituted Ni samples exhibited higher catalytic performance as compared to the LaMnO3 due to the structural defects. But, the high substitution of Ni gradually deforms the structure to rhombohedra, decreases surface area and reduces the number of active Mn sites. Therefore, the catalytic performance passes through a maximum with respect to Ni content. LaMn0.3Ni0.7O3±δ prepared by the Pechini method is more active than others in the oxidation of CH4 and CO.
[1] Z. Li, G.B. Hoflund, J. Nat. Gas Chem. 12 (2003) 153-160.
[2] H. He, M. Liu, H. Dai, W. Qiu, X. Zi, Catal. Today 126 (2007) 290-295.
[3] S. Ordóñez, J.R. Paredes, F.V. Díez, Appl. Catal. A 341 (2008) 174-180.
[4] J.H.G. Rangel, P.R.G. Gonçalves Jr, M.M. Oliveira, M.I.B. Bernardi, Elson Longo, L.E.B. Soledade, I.M.G. Santos, A.G. Souza, Mater. Res. Bull. 43 (2008) 825-835.
[5] S. Cimino, A. Di Benedetto, R. Pirone, G. Russo, Catal. Today 83 (2003) 33-43.
[6] R. Spinicci, A. Delmastro, S. Ronchetti, A. Tofanari, Mater. Chem. Phys. 78 (2003) 393-399.
[7] S. Cimino, S. Colonna, S. De Rossi, M. Faticanti, L. Lisi, I. Pettiti, P. Porta, J. Catal. 205 (2002) 309-317.
[8] C. Gong, F. Guoliang, H. Yanfeng, S. Chonglin, H. Qifei, Z. Zhongrong, Front. Chem. Sci. Eng. 1 (2007) 6-10.
[9] G. Xu, H. Bai, X. Huang, W. He, L. Li, G. Shen, G. Han, J. Mater. Chem. A 3 (2015) 547-554.
[10] E. Campagnoli, A. Tavares, L. Fabbrini, I. Rossetti, Y.A. Dubitsky, A. Zaopo, L. Forni, Appl. Catal. B 55 (2005) 133-139.
[11] X. Yan, Q. Huang, B. Li, X. Xu, Y. Chen, S. Zhu, S. Shen, J. Ind. Eng. Chem. 19 (2013) 561-565.
[12] H. Ziaei-Azad, A. Khodadadi, P. Esmaeilnejad-Ahranjani, Y. Mortazavi, Appl. Catal. B 102 (2011) 62-70.
[13] Y. Ding, S. Wang, L. Zhang, Z. Chen, M. Wang, S. Wang, Catal. Commun. 97 (2017) 88-92.
[14] Z. Zhang, Z. Kong, H. Liu, Y. Chen, Front. Chem. Sci. Eng. 8 (2014) 87-94.
[15] J. Yang, Y. Guo, Chinese Chem. Lett. 29 (2018) 252-260.
[16] K.S. Song, H.X. Cui, S.D. Kim, S.K. Kang, Catal. Today 47 (1999) 155-160.
[17] C. Shi, H. Chang, C. Wang, T. Zhang, Y. Peng, M. Li, Y. Wang, J. Li, Ind. Eng. Chem. Res. 57 (2018) 920-926.
[18] Y. Shao, X.F. Wang, M. Ao, C.R. Gong, G.L. Fan, H.F. Chen, Front. Mater. Sci. 6 (2012) 304-310.
[19] W. Yue-Hui, L. Lai-Tao, L. Wei, Russ. J. Phys. Chem. A 84 (2010) 405-408.
[20] R.J.H. Voorhoeve, D.W. Johnson, J.P. Remeika, P.K. Gallagher, Science 195 (1977) 827-833.
[21] R. Ran, X. Wu, D Weng, J. Alloys Comp. 414 (2006) 169-174.
[22] H. Falcón, J.A. Barbero, J.A. Alonso, M.J. Martínez-Lope, J.L.G. Fierro, Chem. Mater. 14 (2002) 2325-2333.
[23] L.G. Tejuca, J.L.G. Fierro, J.M. Tascón, Adv. Catal. 36 (1989) 237-328.
[24] S. Royer, D. Duprez, ChemCatChem 3 (2011) 24-65.
[25] T. Seiyama, Catal. Rev. 34 (1992) 281-300.
[26] M. Parvary, S.H. Jazayeri, A. Taeb, C. Petit, A. Kiennemann, Catal. Commun. 2 (2001) 357-362.
[27] H. Arai, T. Yamada, K. Eguchi, T. Seiyama, Appl. Catal. 26 (1986) 265-276.
[28] A.C. Terracciano, S.T. De Oliveira, S.S. Vasu, N. Orlovskaya, Exp. Therm. Fluid Sci. 90 (2018) 330-335.
[29] D.A. Hassan, J. Xu, Y. Chen, L. Li, R. Zeng, Mater. Res. Bull. 79 (2016) 69-72.
[30] H. Wang, X. Dong, T. Zhao, H. Yu, M. Li, Appl. Catal. B 245 (2019) 302-313.
[31] R. Benakcha, M. Omari, Inorg. Nano-Met. Chem. 47 (2017) 1103-1109.
[32] G. Saracco, G. Scibilia, A. Iannibello, G. Baldi, Appl. Catal. B 8 (1996) 229-244.
[33] M. Haruta, H. Sano, Int. J. Hydrogen Energ. 7 (1982) 737-740.
[34] R. Hu, R. Ding, J. Chen, J. Hu, Y. Zhang, Catal. Commun. 21 (2012) 38-41.
[35] G. Saracco, F. Geobaldo, G. Baldi, Appl. Catal. B 20 (1999) 277-288.
[36] Z. Zhong, K. Chen, Y. Ji, Q. Yan, Appl. Catal. A 156 (1997) 29-41.
[37] C.A. da Silva, P.E.V. de Miranda, Int. J. Hydrogen Energy 40 (2015) 10002-10015.
[38] A.C. Terracciano, S.T. De Oliveira, S.S. Vasu, N. Orlovskaya, Exp. Therm. Fluid Sci. 90 (2018) 330-335.