Pr3+ doped CoFe2O4: A highly efficient, magnetically recoverable and reusable catalyst for one-pot four-component synthesis of multisubstituted pyrroles
الموضوعات : Iranian Journal of CatalysisFiroz Kalam Khan 1 , Amol Pachpinde 2 , Mallinath Langade 3 , Kishan Lohar 4 , Sunil Patange 5 , Omprakash Bhusnure 6 , Jaiprakash Sangshetti 7
1 - Dr. Rafiq Zakaria Campus, Y.B. Chavan College of Pharmacy, Aurangabad 431001, (M.S.), India.
2 - Department of Chemistry, Jawahar Art Science and Commerce College, Andur, Osmanabad 413603, (M. S.), India.
3 - Department of Chemistry, Jawahar Art Science and Commerce College, Andur, Osmanabad 413603, (M. S.), India.
4 - Materials Research Laboratory, Srikrishna Mahavidyalaya Gunjoti, Omerga, Osmanabad 413 613, (M. S.), India.
5 - Materials Research Laboratory, Srikrishna Mahavidyalaya Gunjoti, Omerga, Osmanabad 413 613, (M. S.), India.
6 - Department of Quality Assurance, Channabasweshwar Pharmacy College, Latur 413512, (M. S.), India.
7 - Dr. Rafiq Zakaria Campus, Y.B. Chavan College of Pharmacy, Aurangabad 431001, (M.S.), India.
الکلمات المفتاحية: Catalyst Reusability, Pr3+ doped CoFe2O4, Multisubstituted pyrroles, Recoverable using magnet,
ملخص المقالة :
A facile and highly efficient one-pot synthesis of multisubstituted pyrrole derivatives is reported via a four-component reaction of amines, aldehydes, acetylacetone and nitromethane using Pr3+ doped CoFe2O4 as a catalyst in solvent free conditions at 90°C. The catalyst is easily recoverable using magnet and could be reused without a significant loss of catalytic activity. Even after five runs for the reaction, the catalytic activity of Pr3+ doped CoFe2O4 was almost the same as that of the freshly used catalyst. The proposed method is advantageous due to its little catalyst loading, short reaction time, catalyst reusability, and excellent yields.
[1] L. Banfi, A. Basso, L. Giardini, R. Riva, V. Rocca, G. Guanti, Eur. J. Org. Chem. 1 (2011) 100-109.
[2] N. Ma, B. Jiang, G. Zhang, S.J. Tu, W. Wever, G. Li, Green Chem. 12 (2010) 1357-1361.
[3] C.L. Floch, E.L. Gall, E. Leonel, J. Koubaaet, T. Martens, P. Retailleau, Eur. J. Org. Chem. 2010 (2010) 5279-5286.
[4] C. Haurena, E.L. Gall, S. Sengmany, T. Martens, M. Troupel, J. Org. Chem. 75 (2010) 2645-2650.
[5] M. Adib, E. Sheikhi, A. Kavoosi, H.R. Bijanzadeh, Tetrahedron 47 (2010) 9263-9269.
[6] W.B. Chen, Z.J. Wu, Q.L. Pei, L.F. Cun, X.M. Zhang, W.C. Yuan, Org. Lett. 12 (2010) 3132-3135.
[7] M.S. Singh, S. Chowdhury, RSC Adv. 2 (2012) 4547-4592.
[8] J.R. Rosien, W. Seichter, M. Mazik, Org. Biomol. Chem. 11 (2013) 6569-6579.
[9] J.T. Manka, A.L. Rodriguez, R.D. Morrison, D.F. Venable, H.P. Cho, A.L. Blobaum, J.S. Daniels, C.M. Niswender, P.J. Conn, C.W. Lindsley, K.A. Emmitte, Bioorg. Med. Chem. Lett. 23 (2013) 5091-5096.
[10] M.Z. Wang, H. Xu, T.W. Liu, Q. Feng, S.J. Yu, S.H. Wang, Z.M. Li, Eur. J. Med. Chem. 46 (2011) 1463-1472.
[11] Y.Q. Yang, Q. Zhang, J.F. Zheng, S.B. Zhang, Polymer 54 (2013) 3254-3260.
[12] D. Bandyopadhyay, S. Mukherjee, J.C. Granados, J.D. Short, B.K. Banik, Eur. J. Med. Chem. 50 (2012) 209-221.
[13] F.P. Ma, P.H. Li, B.L. Li, L.P. Mo, N. Liu, H.J. Kang, Y.N. Liu, Z.H. Zhang, Appl. Catal. A 457 (2013) 34-41.
[14] J.B. Bharate, R. Sharma, S. Aravinda, V.K. Gupta, B. Singh, S.B. Bharate, R.A. Vishwakarma, RSC Adv. 3 (2013) 21736-21742.
[15] S. Madabhushi, V.S. Vangipuram, K.K.R. Mallu, N. Chinthala, C.R. Beeram, Adv. Synth. Catal. 354 (2012) 1413-1416.
[16] G. Pacchioni, Surf. Rev. Lett. 7 (2000) 277-306.
[17] L.D. Pachon, J.H. van Maarseveen, G. Rothenberg, Adv. Synth. Catal. 347 (2005) 811-815.
[18] J.N. Sangshetti, F.A.K. Khan, C.S. Kute, Z. Zaheer, R.Z. Ahmed, Russ. J. Org. Chem. 51 (2015) 69-73.
[19] J.N. Sangshetti, F.A.K. Khan, R.S. Chouthe, Z. Zaheer, R.Z. Ahmed, J. Taibah Univ. Sci. 9 (2015) 548-554.
[20] A.P.G. Nikalje, M.S. Ghodke, F.A.K. Khan, J.N. Sangshetti, Chinese Chem. Lett. 26 (2015) 108-112.
[21] Z. Zaheer, F.A.K Khan, J.N. Sangshetti, R.H. Patil, EXCLI J. 14 (2015), 935-947.
[22] J.N. Sangshetti, N.D. Kokare, S.A. Kotharkar, D.B. Shinde, Chinese Chem. Lett. 19 (2008) 762-766.
[23] J.N. Sangshetti, N.D. Kokare, D.B. Shinde, Chinese Chem. Lett. 18 (2007) 1305-1308.
[24] J.N. Sangshetti, N.D. Kokare, D.B. Shinde, Russ. J. Org. Chem. 45 (2009) 1116-1118.
[25] J.N. Sangshetti, D.B. Shinde, Bioorg. Med. Chem. Lett. 20 (2010) 742-745.
[26] J.N. Sangshetti, S.A.M.K. Ansari, D.B. Shinde, Chinese Chem. Lett. 22 (2011) 163-166.
[27] J.N. Sangshetti, F.A.K. Khan, R.S. Chouthe, M.G. Damale, D.B. Shinde, Chinese Chem. Lett. 25 (2014) 1033-1038.
[28] J.N. Sangshetti, P.P. Dharmadhikari, R.S. Chouthe, B. Fatema, V. Lad, V. Karande, S.N. Darandale, D.B. Shinde, Bioorg. Med. Chem. Lett. 23 (2013) 2250-2253.
[29] A.M. Pachpinde, M.M. Langade, K.S. Lohar, S.M. Patange, S.E. Shirsath, Chem. Phys. 429 (2014) 20-26.
[30] B.L. Li, M. Zhang, H.C. Hu, X. Dub, Z.H. Zhang, New J. Chem. 38 (2014) 2435- 2442.
[31] N. Gupta, K.N. Singh, J. Singh, J. Mol. Liq. 199 (2014) 470-473.
[32] B.L. Li, H.C. Hu, L.P. Mo, Z.H. Zhang, RSC Adv. 4 (2014) 12929-12943.