Introducing Pt/ZnO as a new non carbon substrate electro catalyst for oxygen reduction reaction at low temperature acidic fuel cells
الموضوعات : Iranian Journal of CatalysisRasol Abdullah Mirzaie 1 , Fatemeh Hamedi 2
1 - Fuel Cell Research Laboratory, Department of Chemistry, Faculty of Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
2 - Fuel Cell Research Laboratory, Department of Chemistry, Faculty of Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
الکلمات المفتاحية: Catalytic activity, Oxygen Reduction Reaction, Gas diffusion electrode, Platinum on zinc oxide electrocatalysts, Non-carbon substrate, Single Wall Carbon Nanotube,
ملخص المقالة :
Gas diffusion electrode was used for providing better conditions in fuel cell systems for oxygen reduction reaction (ORR). Because the slow kinetics of the oxygen reduction reaction at the proton exchange membrane fuel cell cathode restricts fuel cell efficiency. To this end, researchers have used platinum-coated carbon. In the present study, due to the reduction of carbon corrosion, Zinc oxide nanoparticles have been employed as a support material for platinum. The Pt/ZnO nanoparticles catalyst was made via a combined process of impregnation and seeding method. The microstructure of coating was characterized using scanning electron microscopy (SEM) which indicates that Pt nanoparticles are uniformly dispersed on the surface of ZnO. In order to investigate the chemical composition and crystalline phases of coating, X-ray analysis was carried out. Electrochemical Impedance Spectroscopy (EIS) was carried out for comparing the charge transfer effect during the ORR. The catalytic performance of the electrodes for ORR is evaluated through linear sweep voltammetry measurement. The O2 reduction current for Pt/ZnO alone is expectedly low due to the low electronic conductivity in ZnO. However, adding single-wall carbon nanotube (SWCNT) to the reaction layer improves the electrode performance. The prepared Pt/ZnO/SWCNT 30 wt. % electrode shows high catalytic activity for the ORR, which is probably attributed to conductivity changes caused by the addition of SWCNT. The electrochemical active surface area (ECSA) and durability investigation was studied by cyclic voltammetry in nitrogen saturated 0.5 M H2SO4. The results calculated from ECSA measurements were indicated that the degradation rate of optimized electrode is smaller than Pt/C electrode.
[1] H. Zhu, M. Luo, S. Zhang, L. Wei, F. Wang, Z. Wang, Y. Wei, K. Han, Int. J. Hydrogen Energy 38 (2013) 3323-3329.
[2] S.M Andersen, M. Borghei, P. Lund, Y. Elina, A. Pasanen, E. Kauppinen, V. Ruiz, P. Kauranen, E.M. Skou, Solid State Ionics 231 (2013) 94–101.
[3] B.N. Popov, X. Li, G. Liu, J.W. Lee, Int. J. Hydrogen Energy 36 (2011) 1794-1802.
Fig. 8. Electrochemical active surface area as a function of cycle numbers on Pt/ZnO/SWCNT 30wt.% and commercial Pt/C (20wt.%) electrodes.
Table 2. Comparison of prepared electrodes (commercial Pt/C (20wt.%) and Pt/ZnO/SWCNT 30wt.%)for catalyst degradation.
Catalyst ECSA (m2/gPt)
Initial After 1200 cycles
Pt/C commercial wt.20% 84.21 31
Pt/ZnO/SWCNT 30wt.% 46.79 37.97
[4] W. Song, H. Yu, L. Hao, Z. Miao, B. Yi, Z. Shao, Solid State Ionics 181 (2010) 453–458.
[5] B. Zhao, L. Sun, R. Ran, Z. Shao, Solid State Ionics 262 (2014) 313–318.
[6] B. Li, Z. Yan, D.C. Higgins, D. Yang, Z. Chen, J. Ma, J. Power Sources 262 (2014) 488-493.
[7] H. Zhang, P.K. Shen, Chem. Soc. Rev. 41 (2012) 2382-2394.
[8] J. Bai, Q. Zhu, Z. Lv, H. Dong , J. Yu, L. Dong, Int. J. Hydrogen Energy 38 (2013) 1413-1418.
[9] A. Maghsodi, M.R. Milani Hoseini, M. Dehghani Mobarakeh, M. Kheirmand, L. Samiee, F. Shoghi, M. Kameli, Appl. Surf. Sci. 257 (2011) 6353–6357
[10] H.H. Wang, Z.Y. Zhou, Q. Yuan, N. Tian, S.G. Sun, Chem. Commun. 47 (2011) 3407–3409.
[11] M.S. saha, Y. Zhang, M. Cai, X. Sun, Int. J. Hydrogen Energy 37 (2012) 4633-4632.
[12] C.H. Chang, T.S. Yuen, Y. Nagao, H. Yugami, Solid State Ionics 197 (2011) 49–51.
[13] I. Gatto, A. Stassi, E. Passalacqua, A.S. Arico, Int. J. Hydrogen Energy 38 (2013) 675-681.
[14] L-R. Yang, D-S. Tsai, Y-S. Chao, W-H. Chung, D.P. Wilkinson, Int. J. Hydrogen Energy 36 (2011) 7381-7390.
[15] R. Wang, X. Li, H. Li, Q. Wang, H. Wang, W. Wang, J. Kang, Y. Chang, Z. Lei, Int. J. Hydrogen Energy 36 (2011) 5775-5781.
[16] K-S. Lee, C. Jang, D. Kim, H. Ju, T-w. Hong, W. Kim, D. Kim, Solid State Ionics 225 (2012) 395–397.
[17] S.S. Jyothirmayee, S. Ramaprabhu, ACS Appl. Mater. Interfaces 4 (2012) 3805−3810.
[18] N.M. Markovic, P.N. Ross, Surf. Sci. Rep. 45 (2002) 117-229.
[19] Y. Lin, X, Cui, C. Yen, C.M. Wai, J. Phys. Chem. B 109 (2005) 14410 14415.
[20] S.G. Sharma, B. Pollet, J. Power Sources 208 (2012) 96-119.
[21] B. Avasarala, P. Haldar, Int. J. Hydrogen Energy 36 (2 0 1 1) 3965-3974.
[22] S. Yin, S. Mu, M. Pan, Z. Fu, J. Power Sources 196 (2011) 7931– 7936.
[23] S.V. Kraemer, K. Wikander, G. Lindbergh, A. Lundblada, A.E.C. Palmqvist, J. Power Sources 180 (2008)185-190.
[24] T. Ioroi, Z. Siroma, N. Fujiwara, S.I. Yamazaki, K. Yasuda, Electrochem. Commun. 7 (2005) 183-188.
[25] G. Chen, C.C. Waraksa, H. Cho, D.D. Macdonald, T.E. Mallouka, J. Electrochem. Soc. 150 (2003) E423-E428.
[26] L. Timperman, A. Lewera, W. Vogel, N. Alonso-Vante, Electrochem. Commun. 12 (2010) 1772-1775.
[27] K.W. Park, K.S.Seol, Electrochem. Commun. 9 (2007) 2256–2260.
[28] B. Seger, A. Kongkanand, K. Vinodgopal, P.V. Kamat, J. Electroanal. Chem. 621 (2008) 198-204.
[29] K. Sasaki, L. Zhang, R. Adzic, Phys. Chem. Chem. Phys. 10 (2008) 159-167.
[30] M. Dou, M. Hou, D. Liang, W. Lu, Z. Shao, B. Yi, Electrochim. Acta 92 (2013) 468– 473.
[31] S.A. Jina, K. Kwon, C. Pak, H. Chang, Catal. Today 164 (2011) 176–180.
[32] J. Shim, C.R. Lee, H.K. Lee, J.S. Lee, E.J. Cairns, J. Power Sources 102 (2001) 172-177.
[33] H. Chhina, S. Campbell, O, Kesler, J. Electrochem. Soc. 154 (2007) B533–B539.
[34] M.S. Saha, M.N. Banis, Y. Zhang, R. Li, X. Sun, M. Cai, F.T. Wagner, J. Power Sources 192 (2009) 330-
335.
[35] B.R. Camacho, C. Morais, M.A. Valenzuela, N. Alonso-Vante, Catal. Today 202 (2013) 36-43.
[36] S.J. Tauster , S.C. Fung, R.L. Garten, J. Am. Chem. Soc 100 (1978) 170-175.
[37] X.-Z. yuan, H. wang, PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications, in: J. Zhang (Ed.), PEM Fuel Cell Fundamentals, Springer, Vancouver, Canada, 2008, pp. 89-134.
[38] J.A. Schwarz, C. Contescu, A. Contescu, Chem. Rev. 95 (1995) 477-510.
[39] R. Abdullah Mirzaie, F. Kamrani, A. Anaraki Firooz, A.A. Khodadadi, Mater. Chem. Phys. 133 (2012) 311-316.
[40] E.V. Ramos-Fernandez, A. Sepulveda -Escribano, F. Rodrıguez-Reinoso, Catal. Commun. 9 (2008)1243-1246.
[41] N. Tamaekong, C. Liewhiran, A. Wisitsoraat, S. Phanichphant, Sensor. Actuat B: Chem. 152 (2011) 155–161.
[42] M. Consonni, D. Jokic, D.Y. Murzin, R. Touroude, J. Catal. 188 (1999) 165–175.
[43] M. Ohta, Y. Ikeda, A. Igarashi, Appl. Catal. A 258 (2004) 153–158.
[44] S.K. Mishra, R.K. Srivastava, S.G. Prakash, J. Alloy. Compd. 539 (2012) 1–6.
[45] W. Trongchuankij, K. Pruksathorn, M. Hunsom, Appl. Energy 88 (2011) 974-980.
[46] B. Cullity, S. Stock, Elements of X-ray Diffraction, Addison-Wesley Reading, MA, 1978.
[47] C. Jeffree, N.D Read, "Ambient- and Low-temperature scanning electron microscopy". In Hall, J. L. and Hawes, C. R. Electron Microscopy of Plant Cells. London: Academic Press. (1991) 313–413.
[48] W. Zhang, J. Chen, G.F. Swiegers, Z-F. Ma, G.G. Wallace. Nanoscale 2 (2010) 282–286.
[49] A. Pozio, M.D. Francesco, A. Cemmi, F. Cardellini, L. Giorgi, J. Power Sources 105 (2002) 13–19.
[50] S. Cruz-Manzo, R. Chen, P. Rama, Int. J. Hydrogen Energy 38 (2013) 1702-1713.
[51] G. Chen, C.C. Waraksa, H. Cho, D.D. Macdonald, T.E. Mallouka, J. Electrochem. Soc. 150 (2003) E423-E428.
[52] S. Talam, S.R. Karumuri, N.Gunnam. ISRN Nanotechnology 372505 (2012) 1-6.
[53] J. Wang, G. Yin, Y. Shao, S. Zhang, Z. Wang, Y. Ga, J. Power Sources 171 (2007) 331–339.