Effects of metal oxide catalysts on the photodegradation of antibiotics effluent
الموضوعات : Iranian Journal of CatalysisChaimaa EL Bekkali 1 , Habiba Bouyarmane 2 , Said Laasri 3 , Abdelaziz Laghzizil 4 , Ahmed Saoiabi 5
1 - Laboratoire de Chimie Appliquée des Matériaux, Université Mohamed V, Faculté des Sciences, BP.1014, Rabat, Morocco.
2 - Laboratoire de Chimie Appliquée des Matériaux, Université Mohamed V, Faculté des Sciences, BP.1014, Rabat, Morocco.
3 - Laboratoire des Sciences de l'Ingénieur Pour l'Énergie, École Nationale des Sciences Appliquées-El Jadida-Morocco.
4 - Laboratoire de Chimie Appliquée des Matériaux, Université Mohamed V, Faculté des Sciences, BP.1014, Rabat, Morocco.
5 - Laboratoire de Chimie Appliquée des Matériaux, Université Mohamed V, Faculté des Sciences, BP.1014, Rabat, Morocco.
الکلمات المفتاحية: TiO2, ZnO, Catalysts, Antibiotics, Photocatalytic activity, Removal,
ملخص المقالة :
The current study examined the effect of metal oxide catalysts on the sorption and photocatalytic efficiencies for the removal of ciprofloxacin and ofloxacin in water. ZnO and TiO2 catalysts are prepared using a suitable method based on the sol-gel process, which have a great change in structural and textural properties. The structure and surface area of the synthesized catalysts were characterized, and used as sorbents/catalysts to remove antibiotics from water. Results showed a high adsorption capacity for the Titania oxide related to its great surface area, it is about 280 m2 g-1, compared to that of ZnO catalyst with only 19 m2 g-1. However, both photocatalysts exhibit a difference in photocatalytic activity versus both drugs. Therefore, ZnO, as a competitor catalyst for the TiO2, provides the most effective treatment of contaminated water with antibiotic pollutants to produce suitable reused water.
[1] V. Homen, L. Santos, J. Environ. Manage. 92 (2011) 2304-47.
[2] M. Amini, M. Khanavi, A. Shafiee, Iran. J. Pharm. Res. 2 (2004) 99-101.
[3] E. Zuccato, S. Castiglioni, R. Fanelli, G. Reitano, D. Calamari, New York, Springer-Verlag, 2004.
[4] N. Ajoudanian, A. Nezamzadeh-Ejhieh, Mater. Sci. Semicond. Proces. 36 (2015) 162-169.
[5] A. Pourtaheri, A. Nezamzadeh-Ejhieh, Chem. Eng. Res. Design. 104 (2015) 835-843.
[6] L. Elsellami, N. Hafidhi, F. Dappozze, A. Houas, C. Guillard, Chin. J. Catal. 36 (2015) 1818-1824.
[7] A.M. Ferrari-Lima, R.P.D. Souza, S.S. Mende, R.G. Marques, M.L.Gimenes, N.R.C. Fernandes-Machado, Catal. Today 241 (2015) 40-46.
[8] G.S. Pozan, A. Kambur, Chemosphere 105 (2014) 152-159.
[9] A. Nezamzadeh-Ejhieh, M. Bahrami, Des. Water Treat. 52 (2014) 3328-3337.
[10] A. Nezamzadeh-Ejhieh, Z. Ghanbari-Mobarakeh, J. Ind. Eng. Chem. 21 (2015) 668-676.
[11] D. Li, H. Haneda, Chemosphere 51 (2003) 129-137.
[12] V. Srikant, V.D.R. Clarkea, J. Appl. Phys. 83 (1998) 5447-5451.
[13] E. Elmolla, M. Chaudhuri, J. Hazard. Mater. 173 (2011) 445-449.
[14] A. Nezamzadeh-Ejhieh, M. Bahrami, Des. Water Treat. 55 (2015) 1096-1104.
[15] G.H. Safari, M. Hoseini, M. Seyedsalehi, H. Kamani, J. Jaafari, A.H. Mahvi, Int. J. Environ. Sci. Technol. 12 (2015) 603-616.
[16] R.A. Palominos, M.A. Mondaca, A. Giraldo, G. Penuela, M. Perez-Moya, H.D. Mansilla, Catal. Today 144 (2006) 100-112.
[17] H. F. Moafi, Iran. J. Catal. 6 (2016) 281-292.
[18] B. Khodadadi, Iran. J. Catal. 6 (2016) 305-311.
[19] A. Besharati-Seidani, Iran. J. Catal. 6 (2016) 447-454.
[20] S. Dianat, Iran. J. Catal. 8 (2018) 121-132.
[21] S. Feizpoor, A. Habibbi-Yangjeh, Mater. Res. Bull. 99 (2018) 93-102.
[22] M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee, J. Mater. Chem. A 2 (2014) 637-644.
[23] R. Nosrati, A. Olad, R. Maramifar, Environ. Sci. Pollut. 19 (2012) 2291-2299.
[24] H.R. Pouretedal, M. Ahmadi, Iran. J. Catal. 3 (2013) 149-155.
[25] L. Vafayi, S. Gharibe, Iran. J. Catal. 5 (2015) 365-371.
[26] M. Giahi, A. H. Dargahi, Iran. J. Catal. 6 (2016) 381-387.
[27] M. Bordbar, S. Forghani-Pilerood, A. Yeganeh-Faal, Iran. J. Catal. 6 (2016) 415-421.
[28] S. Aghdasi, M. Shokri, Iran. J. Catal. 6 (2016) 481-487.
[29] M. Pirhashemi, A. Habibi-Yangjeh, Sep. Purif. Technol. 193 (2018) 69-80.
[30] H. Bouyarmane, S. Saoiabi, I. El Hanbali, M. El Karbane, A. Rami, S. Masse, A. Laghzizil, T. Coradin, Eur. Phys. J. Spec. Top. 224 (2015) 1861-1869.
[31] M. Anari-Anaraki, A. Nezamzadeh-Ejhieh, J. Colloid Interf. Sci. 440 (2015) 272-281.
[32] S.A. Hosseini, R. Saeedi, Iran. J. Catal. 7 (2017) 37-46.
[33] S.D. Khairnar, M.R. Patil, V.S. Shrivastava, Iran. J. Catal. 8 (2018) 143-150.
[34] A.Nezamzadeh-Ejhieh, S. Hushmandrad, Appl. Catal. A 388 (2010) 149-159.
[35] D. Li, W. Shi, Chin. J. Catal. 37 (2016) 792-799.
[36] I. Michael, E. Hapeshi, C. Michael, D. Fatta-Kassinos, Water Res. 44 (2010) 5450-5462.
[37] A. Kaur, G. Gupta, A.O. Ibhadon, D.B. Salunke, A.S.K. Sinha, S.K. Kansal, J. Environ. Chem. Eng. 6 (2018) 3621-3630.
[38] M. El-Kemary, H. El-Shamy, I. El-Mehasseb, J. Lumin. 130 (210) 2327-2331.
[39] V. Augugliaro, M. Litter, L. Palmisano, J. Soria, J. Photochem. Photobiol. C 7 (2006) 127-144.
[40] S. Ahmed, M.G. Rasul, R. Brown, M.A. Hashib, J. Environ. Manage. 92 (2011) 311-330.