Green synthesis of Ag/Fe3O4/ZrO2 nanocomposite using aqueous Centaurea cyanus flower extract and its catalytic application for reduction of organic pollutants
الموضوعات : Iranian Journal of CatalysisAkbar Rostami-Vartooni 1 , Abolfazl Moradi-Saadatmand 2 , Mojtaba Bagherzadeh 3 , Mohammad Mahdavi 4
1 - Department of Chemistry, Faculty of Science, University of Qom, Qom 3716146611, Iran.
2 - Department of Chemistry, Faculty of Science, University of Qom, Qom 3716146611, Iran.
3 - Reactor and Nuclear Safety School, Nuclear Science and Technology Research Institute, 81465-1589, Isfahan, Iran.
4 - Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Iran.
الکلمات المفتاحية: Green synthesis, Zirconia, Ag Nanoparticles, Magnetic support, Organic pollutant, Centaurea cyanus,
ملخص المقالة :
In this work, at first, nano ZrO2 and Fe3O4/ZrO2 nanocomposite were prepared by sol-gel and co-precipitation methods, respectively. Then, Ag nanoparticles (Ag NPs) were mixed with themin environmentally friendly and mild conditions using C. cyanus flower extract as a reducing and stabilizing agent. The synthesized nanocomposites were characterized by FT-IR, XRD, FE-SEM, EDS, and VSM techniques. The experimental results confirmed formation of the Ag nanoparticles with the 30-90 nm diameter on the surface of supports at room temperature within a few minutes. After that, the catalytic activity of the prepared nanocomposites in reduction of 4-nitrophenol (4-NP) and methyl orange (MO) have been studied and our results showed that they have following sequence: Ag/ZrO2 > Ag/Fe3O4/ZrO2 > ZrO2 > ZrO2 (550 °C) > Fe3O4/ZrO2. Finally, the magnetically recoverable Ag/Fe3O4/ZrO2 nanocomposite could be reused three times without a considerable decrease in its catalytic activity. Observed results were presented here and the probable catalytic mechanism was discussed.
[1] M. Karimi-Shamsabadi, M. Behpour, A. Kazemi Babaheidari, Z. Saberi, J. Photochem. Photobiol. A: Chem. 346 (2017) 133–143.
[2] A. Nezamzadeh-Ejhieh, S. Khorsandi, J. Ind. Eng. Chem. 20 (2014) 937–946.
[3] A. Nezamzadeh-Ejhieh, Z. Ghanbari-Mobarakeh, J. Ind. Eng. Chem. 21 (2015) 668–676.
[4] A. Nezamzadeh-Ejhieh, N. Moazzeni, J. Ind. Eng. Chem. 19 (2013) 1433–1442.
[5] A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi, Appl. Catal. A 477 (2014) 83-92.
[6] A. Buthiyappan, A.R.A. Aziz, W.M.A.W. Daud, Rev. Chem. Eng. 32 (2016) 1–47.
[7] M. Hamadanian, A. Reisi-Vanani, A. Majedi, J. Iran. Chem. Soc. 7 (2010) Supplement 2, S52–S58.
[8] S. Tangestaninejad, M. Moghadam, V. Mirkhani, I. Mohammadpoor-Baltork, H. Salavati, J. Iran. Chem. Soc. 7(2010) Supplement 2, S161–S174.
[9] H. Pouretedal, M. Fallahgar, F. Sotoudeh Pourhasan, M. Nasiri, Iran. J. Catal. 7 (2017) 317-326.
[10] S.A. Hosseini, R. Saeedi, Iran. J. Catal. 7 (2017) 37-46.
[11] S. Dianat, Iran. J. Catal. 8 (2018) 121-132.
[12] N. Elmi Fard, R. Fazaeli, Iran. J. Catal. 8 (2018) 133-141.
[13] A. Bagheri Ghomi, V. Ashayeri, Iran. J. Catal. 2 (2012) 135-140.
[14] M.H. Habibi, E. Askari, Iran. J. Catal. 1 (2011) 41-44.
[15] M. Shekofteh-Gohari, A. Habibi-Yangjeh, Ceram. Int. 43 (2017) 3063-3071.
[16] M. Nasrollahzadeh, M. Atarod, S.M. Sajadi, Appl. Surf. Sci. 364 (2016) 636-644.
[17] A. Rostami-Vartooni, IET Nanobiotechnol. 11 (2017) 349-359.
[18] A. Nezamzadeh-Ejhieh, M. Khorsandi, Iran. J. Catal. 1 (2011) 99-104.
[19] M. Shekofteh-Gohari, A. Habibi-Yangjeh, Solid State Sci. 48 (2015) 177-185.
[20] B. Khodadadi, Iran. J. Catal. 6 (2016) 305–311.
[21] M. Nasrollahzadeh, M. Maham, A. Rostami-Vartooni, M. Bagherzadeh, S.M. Sajadi, RSC Adv. 5 (2015) 64769-64780.
[22] H. Faghihian, A. Bahranifard, Iran. J. Catal. 1 (2011) 45-50.
[23] A. Rostami-Vartooni, M. Alizadeh, M. Bagherzadeh, Beilstein J. Nanotechnol. 6 (2015) 2300-2309.
[24] B.M. Reddy, A. Khan, Cat. Rev. Sci. Eng. 47 (2005) 257-296.
[25] M. Kumar, G.B. Reddy, Phys. Status Solidi B 246 (2009) 2232-2237.
[26] J.B. Park, Nat. Prod. Res. 26 (2012) 1465-1472.
[27] P.M. Kus, I. Jerkovic, C.I.G. Tuberoso, Z. Marijanovic, F. Congiu, Food Chem. 142 (2014) 12-18.
[28] F. Riahi, M. Bagherzadeh, Z. Hadizadeh, RSC Adv. 5 (2015) 72058–72068.
[29] A. Rostami-Vartooni, M. Nasrollahzadeh, M. Alizadeh, J. Colloid Interface Sci. 470 (2016) 268-275.
[30] M. Bordbar, N. Negahdar, M. Nasrollahzadeh, Sep. Purif. Technol. 191 (2018) 295-300.
[31] M. Nasrollahzadeh, S.M. Sajadi, A. Rostami-Vartooni, M. Khalaj, J. Mol. Catal. A: Chem. 396 (2015) 31-39.
[32] B. Khodadadi, M. Bordbar, M. Nasrollahzadeh, J. Colloid Interface Sci. 490 (2017) 1-10.
[33] S.Z. Hejazi, A.F. Shojaei, K. Tabatabaeian, F. Shirini, J. Serb. Chem. Soc. 80 (2015) 971-982.
[34] H. Jiang, P. Chen, S. Luo, X. Tu, Q. Cao, M. Shu, Appl. Surf. Sci. 284 (2013) 942-949.
[35] D. Prakashbabu, R. Hari Krishna, B.M. Nagabhushana, H. Nagabhushana, C. Shivakumara, R.P.S. Chakradar, H.B. Ramalingam, S.C. Sharma, R. Chandramohan, Spectrochim. Acta Part A 122 (2014) 216-222.
[36] P. Chen, W. Zhang, M. Li, P. Ai, L. Tian, H. Jiang, RSC Adv. 6 (2016) 35859-35867.
[37] E. Karaoglu, A. Baykal, M. Senel, H. Sozeri, M.S. Toprak, Mater. Res. Bull. 47 (2012) 2480-2486.
[38] X. Feng, X. Lou, Sep. Purif. Technol. 147 (2015) 266-275.
[39] W.W. Anku, S.O.-B. Oppong, S.K. Shukla, E.S. Agorku, P.P. Govender, Prog. Nat. Sci. Mater. Int. 26 (2016) 354-361.
[40] R. Dwivedi, A. Maurya, A. Verma, R. Prasad, K.S. Bartwal, J. Alloys Compd. 509 (2011) 6848-6851.
[41] T. Tätte, M. Part, R. Talviste, K. Hanschmidt, K. Utt, U. Maeorg, I. Jogi, V. Kiisk, H. Mandar, G. Nurkb, P. Rauwel, RSC Adv. 4 (2014) 17413-17419.
[42] Z. Sherafat, I. Antunes, C. Almeida, J. R. Frade, M.H. Paydar, G.C. Matherd, D.P. Fagg, Dalton Trans. 43 (2014) 9324-9333.
[43] A. Nezamzadeh-Ejhieh, S. Tavakoli-Ghinani, C.R. Chim. 17 (2014) 49–61.
[44] Z.L. Chen, Y. Sun, P. Huang, X.P. Zhou, Nanoscale Res. Lett. 4 (2009) 400-408.
[45] X. Fu, J. Liu, X. He, Colloids Surf. A: Physicochem. Eng. Asp. 453 (2014) 101-108.
[46] A. Rostami-Vartooni, M. Nasrollahzadeh, M. Salavati-Niasari, M. Atarod, J. Alloys Compd. 689 (2016) 15-20.
[47] A. Rostami-Vartooni, M. Nasrollahzadeh, M. Alizadeh, J. Alloys Compd. 680 (2016) 309-314.
[48] S.D. Khairnar, M.R. Patil, V.S. Shrivastava, Iran. J. Catal. 8 (2018) 143-150.
[49] S. Aghdasi, M. Shokri, Iran. J. Catal. 6 (2016) 481-487.
[50] S.P. Deshmukh, R.K. Dhokale, H.M. Yadav, S.N. Achary, S.D. Delekar, App. Surface Sci. 273 (2013) 676-683.
[51] K. Hayakawa, T. Yoshimura, K. Esumi, Langmuir 19 (2003) 5517-5521.
[52] P. Deka, R.C. Deka, P. Bharali, New J. Chem. 38 (2014) 1789-1793.
[53] K.-L. Wu, R. Yu, X.-W. Wei, Cryst. Eng. Commun. 14 (2012) 7626-7632.
[54] F.-H. Lin, R.-A. Doong, J. Phys. Chem. C 115 (2011) 6591-6598.