Optimization and modeling of photocatalytic degradation of Direct Blue 71 from contaminated water by TiO2 nanoparticles: Response surface methodology approach (RSM)
الموضوعات : Iranian Journal of CatalysisMohamadreza Massoudinejad 1 , Mohsen Sadani 2 , Zeinab Gholami 3 , Zeinab Rahmati 4 , Masoume Javaheri 5 , Hassan Keramati 6 , Mansour Sarafraz 7 , Moayed Avazpour 8 , Sabah Shiri 9
1 - School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
2 - School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
3 - Student Research Committee, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
4 - Department of Environmental Health Engineering, School of Public Health, Ilam University of Medical Science, Ilam, Iran.
5 - Department of Environmental Health Engineering, School of Public Health, Ilam University of Medical Science, Ilam, Iran.
6 - Department of Environmental Health Engineering, School of Public Health, Semnan University of Medical Sciences, Semnan, Iran.
7 - Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
8 - Department of Environmental Health Engineering, School of Public Health, Ilam University of Medical Science, Ilam, Iran.
9 - Department of Chemistry. Payame Noor University. P.O. Box 19395-4697, Tehran, Iran.
الکلمات المفتاحية: Optimization, Degradation, RSM, Photocatalyst, TiO2, Direct blue 71,
ملخص المقالة :
In the current survey, the removal of dye from contaminated water was studied by photocatalytic degradation using TiO2 nanoparticles with respect to pH, TiO2 dosage, reaction time, temperature and initial dye concentration. TiO2 nanoparticles were investigated by XRD, FESEM and FT-IR.The RSM was chosen to study the composition effects of input independent factors and one dependent output response (removal efficiency). The P-value (2.2 × 10−16), F-value (1832), R2 (multiple R-squared: 0.9985, adjusted R-squared: 0.9972), and lack of fit (0.432) indicate that the reduced full second order model is highly significant for dye removal by TiO2 nanoparticles.The maximum percentage removal of dye, 90.2%, was achieved at optimum operating conditions including pH=6.5, TiO2 dose (1.2 g L-1), contact time (67.5 min), temperature ( ), and dye concentrations (55 mg L-1)), respectively.The maximum removal efficiency was calculated to be 100%, using regression coefficients derived from the model and the Solver “Add-ins”.The results indicated that the TiO2 photocatalyst was very proper for the removal dye from contaminated water, and it had good efficiency in eliminating textile dyes.
[1] G. Manikandan, P.S. Kumar, A. Saravanan, J. Ind. Eng. Chem. 62 (2018) 446-461.
[2] P. Sharma, H. Kaur, M. Sharma, V. Sahore, Environ. Monit. Assess. 183 (2011) 151-195.
[3] I. Guerrero-Coronilla, L. Morales-Barrera, T.L. Villegas-Garrido, E. Cristiani-Urbina, Environ. Eng. Manag. J. 13 (2014) 1917-1926.
[4] I. Guerrero-Coronilla, L. Morales-Barrera, E. Cristiani-Urbina, J. Environ. Manage. 152 (2015) 99-108.
[5] M.A. Hassaan, A. El Nemr, F.F. Madkour, Egypt. J. Aquat. Rese. 43 (2017) 11-19.
[6] Y. Du, M. Pei, Y. He, F. Yu, W. Guo, L. Wang, PloS One. 9 (2014) 1160-1173.
[7] S. Arivoli, M. Thenkuzhali, P. Martin Deva Prasath, Orbital: Electron. J. Chem. 1 (2009) 138-155.
[8] W. Li, D. Li, Z. Chen, H. Huang, M. Sun, Y. He, X. Fu, J. Phys. Chem.C 112 (2008) 14943-14947.
[9] V. Belessi, G. Romanos, N. Boukos, D. Lambropoulou, C. Trapalis, J. Hazard. Mater. 170 (2009) 836-844.
[10] P.V. Nidheesh, M. Zhou, M.A. Oturan, Chemosphere 197 (2018) 210-227.
[11] A. Srinivasan, T. Viraraghavan, J. Environ. Manage. 91 (2010) 1915-1929.
[12] A. Bhatnagar, A.K. Minocha, Environ. Technol. 31 (2010) 97-105.
[13] L. Shabani, H. Aliyan, Iran. J. Catal. 6 (2016) 221-228.
[14] S. Liu, C. Ni, H. Su, H. Liu, R. Chen, P. Li, Y. Wei, RSC Adv. 6 (2016) 30840-30845.
[15] Y. Jiang, Y. Luo, F. Zhang, L. Guo, L. Ni, Appl. Surf. Sci. 273 (2013) 448-456.
[16] M. Bayat, V. Javanbakht, J. Esmaili, Int. J. Biol. Macromol. 116 (2018) 607-619.
[17] C-H. Liang, F-B. Li, C-S. Liu, J-L. Lü, X-G. Wang, Dyes Pigm. 76 (2008) 477-484.
[18] P. Muthirulan, C. Nirmala Devi, M. Meenakshi Sundaram, Arab. J. Chem. 10 (2017) 1477-1483.
[19] J. Marugán, M-J. López-Muñoz, R. van Grieken, J. Aguado, Ind. Eng. Chem. Res. 46 (2007) 7605-7610.
[20] N. Ajoudanian, A. Nezamzadeh-Ejhieh, Mater. Sci. Semicond. Process. 36 (2015) 162-169.
[21] M. Babaahamdi-Milani, A. Nezamzadeh-Ejhieh, J. Hazard. Mater. 318 (2016) 291-301.
[22] H, Derikvandi, A. Nezamzadeh-Ejhieh, J. Hazard. Mater. 321 (2017) 629-638.
[23] E. Kordouli, K. Bourikas, A. Lycourghiotis, C. Kordulis, Catal. Today 252 (2015) 128-135.
[24] M.M. Amin, F. Teimouri, M. Sadani, M.A. Karami, Desalin. Water Treat. 57 (2016) 9455-9464.
[25] M.M. Amin, B. Jaberian, B. Bina, M. Sadani, R. Hadian, G. Bonyadinejad, M.M. Ahmad Moazzam, EnvironmentAsia 7 (2014) 57-64.
[26] N. Hidayati Othman, N. Hashimah Alias, M. Zaman Shahruddin, N. Fitrah Abu Bakar, N. Raikhan Nik Him, W.J. Lau, J. Environ. Chem. Eng. 6 (2018) 2803-2811.
[27] J. Esmaili-Hafshejani, A. Nezamzadeh-Ejhieh, J. Hazard. Mater. 316 (2016) 194-203.
[28] H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M. Akia, M. Hasanain Isa, J. Ind. Eng. Chem. 26 (2015) 1-36.
[29] A. Pirkarami, M.E. Olya, S. Raeis Farshid, Water Resour. Ind. 5 (2014) 9-20.
[30] M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Int. J. Electrochem. Sci. 7 (2012) 4871-4888.
[31] A. Nezamzadeh-Ejhieh, M. Bahrami, Desalin. Water Treat. 55 (2015) 1096-1104.
[32] H. Zabihi-Mobarakeh, A. Nezamzadeh-Ejhieh, J. Ind. Eng. Chem. 26 (2015) 315-321.
[33] S.A. Hosseini, R. Saeedi, Iran. J. Catal. 7 (2017) 37-46.
[34] M. Nosuhi, A. Nezamzadeh-Ejhieh, Electrochim. Acta 223 (2017) 47-62.
[35] A.Y. Shan, T.I.M. Ghazi, S.A. Rashid, Appl. Catal. A 389 (2010) 1-8.
[36] P. Patnaik, Handbook of Environmental Analysis, 2nd ed, CRC Press, Boca Raton, 2010.
[37] S. Aghabeygi, R. Kiakojori, H. Vakiki Azad, Iran. J. Catal. 6 (2016) 275-279.
[38] K. Rajkumar, M. Muthukumar, Environ. Sci. Pollut. Res. 19 (2012) 148-160.
[39] S. Ghafoori, A. Mowla, R. Jahani, M. Mehrvar, P.K. Chan, J. Environ. Manage. 150 (2015) 128-137.
[40] A. Mohseni Bandpei, S.M. Mohseni, A. Sheikhmohammadi, M. Sardar, M. Sarkhosh, M. Almasian, M. Avazpour, Z. Mosallanejad, Z. Atafar, S. Nazari, S. Rezaei, Korean J. Chem. Eng. 34 (2017) 376-383.
[41] S. Sadri Moghaddam, M.A. Alavi Moghaddam, M. Arami, J. Hazard. Mater. 175 (2010) 651-657.
[42] A.T. Nair, A.R. Makwana, M. Mansoor Ahammed, Water Sci. Technol. 69 (2014) 464-478.
[43] Z.M. Abou-Gamra, M.A. Ahmed, Adv. Chem. Eng. Sci. 5 (2015) 373-388.
[44] Y. Park, Z. Sun, G.A. Ayoko, R.L. Frost, Chemosphere 107 (2014) 249-256.
[45] H. Godini, F. Hashemi, L. Mansuri, M. Sardar, G. Hassani, S. Mohseni, A.A. Alinejad, S. Golmohammadi, A. Sheikh Mohammadi, J. Water Reuse Desalin. 6 (2016) 544-552.
[46] J. Petroski, M.A. El-Sayed, J. Phys. Chem. A 107 (2003) 8371-8375.
[47] S. Wang, S.P. Jiang, X. Wang, Electrochim. Acta 56 (2011) 3338-3344.
[48] W. Konicki, M. Aleksandrzak, D. Moszyński, E. Mijowska, J. Colloid Interface Sci. 496 (2017) 188-200.
[49] H. Aslani, R. Nabizadeh, S. Nasseri, A. Mesdaghinia, M. Alimohammadi, A.H. Mahvi, N. Rastkari, S. Nazmara, Desalin. Water Treat. 57 (2016) 25317-25328.
[50] S. Ghafari, A.A Hamidi, M. Hasanian Isa, A.A. Zinatizadeh, J. Hazard. Mater. 163 (2009) 650-656.
[51] K.K. Garg, B. Prasad, J. Taiwan Inst. Chem. Eng. 60 (2016) 383-393.
[52] M. Umar, A.A Hamidi, M.S. Yusoff, Desalination 274 (2011) 278-283.
[53] M. Mansoor Ahammed, S. Dave, A.T. Nair, Desalin. Water Treat. 56 (2015) 315-326.
[54] T.V. Thuan, B.T. Phuong Quynh, T.D. Nguyen, V.T. Thanh Ho, L.G. Bach, Surf. Interface 6 (2017) 209-217.
[55] G. Hassani, A. Takdastan, M. Ghaedi, G. Goudarzi, A. Neisi, A.A. Babaei, Int. J. Electrochem. Sci. 11 (2016) 8471-8485.
[56] S. Senobari, A. Nezamzadeh-Ejhieh, J. Mol. Liq. 261 (2018) 208-217.
[57] M. Nosuhi, A. Nezamzadeh-Ejhieh, J. Electroanal. Chem. 810 (2018) 119-128.
[58] S. Senobari, A. Nezamzadeh-Ejhieh, J. Mol. Liq. 257 (2018) 173-183.
[59] M. Nosuhi, A. Nezamzadeh-Ejhieh, New J. Chem. 41 (2017) 15508-15516.
[60] Z. Amani-Beni, A. Nezamzadeh-Ejhieh, New J. Chem. 42 (2018) 1021-1030.
[61] H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Colloid Interface Sci. 490 (2017) 628-641.
[62] S.S. Chong, A.R. Abdul Aziz, S.W. Harun, H. Arof, S. Shamshirband, Measurement 74 (2015) 78-86.
[63] F. Nasiri Azad, M. Ghaedi, K. Dashtian, A. Jamshidi, G. Hassani, M. Montazerozohori, S. Hajati, M. Rajabi, A.A. Bazrafshan, RSC Adv. 6 (2016) 19780-19791.
[64] H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Colloid Interface Sci. 490 (2017) 652-664.
[65] H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Photochem. Photobiol. A: Chem. 348 (2017) 68-78.
[66] J. Wu, D. Yu, H. Sun, Y. Zhang, W. Zhang, F. Meng, X. Du, Ind. Crops Prod. 69 (2015) 68-75.
[67] M. Naserifar, S.M. Msoudpanah, S. Alamolhoda, J. Ultrafine Grained Nanostruct. Mater. 51 (2018) 26-31.
[68] T-S. Chen, R-W. Tsai, Y-S. Chen, K-L. Huang, Int J Electrochem. Sci. 9 (2014) 8422-8434.
[69] D. Podstawczyk, A. Witek-Krowiak, A. Dawiec, A. Bhatnagar, Ecol. Eng. 83 (2015) 364-379.