Silica-anchored Cu(I) aminothiophenol complex: An efficient heterogeneous catalyst for synthesis of 1,4-disubstituted 1,2,3-triazoles in water
الموضوعات : Iranian Journal of CatalysisMohammad Bakherad 1 , Ali Keivanloo 2 , Amir Hossein Amin 3 , Pooya Ghmari 4
1 - Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran.
2 - Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran.
3 - Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran.
4 - Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran.
الکلمات المفتاحية: Aroyl bromide, Silica-supported, Click reaction, 1, 2, 3-triazole,
ملخص المقالة :
An efficient method has been developed for synthesis of 1,4-disubstituted 1,2,3-triazoles using the silica-anchored Cu(I) aminothiophenol complex [SiO2-AT-Cu(I)] as a novel heterogeneous catalyst. The prepared catalyst is characterized by the FT-IR spectroscopy, and TGA, SEM, and ICP techniques. Terminal alkynes react with aroyl bromides and sodium azide in the presence of CuI anchored on silica in water at 80°C. The reactions exclusively generate the corresponding regiospecific 1,4-disubstituted 1,2,3-triazoles in good yields. The attractive features of this method are the simple procedure, clean reaction, use of a reusable catalyst, easy workup, and performing a click reaction in water. Moreover, the catalyst can be removed from the reaction mixture by means of simple filtration, and used again for up to five runs without a remarkable loss in its activity.
[1] B.S. Holla, M. Mahalinga, M.S. Karthikeyan, B. Poojary, P.M. Akberali, N.S. Kumari, Eur. J. Med. Chem. 40 (2005) 1173-1178.
[2] R. Buckle, C.J.M. Rockell, H. Smith, B.A. Spicer, J. Med. Chem. 29 (1986) 2262-2267.
[3] D.R. Buckel, D.J. Outred, C.J.M. Rockell, H. Smith, B.A. Spicer, J. Med. Chem. 26 (1983) 251-254.
[4] D.R. Buckel, C.J.M. Rockell, H. Smith, B.A. Spicer, J. Med. Chem. 27 (1984) 223-227.
[5] R. Alvarez, S. Velazquez, A. San-Felix, S. Aquaro, E. De Clercq, C.F. Perno, A. Karlsson, J. Balzarini, M.J. Camarasa, J. Med. Chem. 37 (1994) 4185-4194.
[6] P.H. Olesen, A. R. Sorensen, B. Urso, P. Kurtzhals, A.N. Bowler, U. Ehrbar, B.F. Hansen, J. Med. Chem. 46 (2003) 3333-3341.
[7] N.A. Al-Masoudim, Y.A. Al-Soud, Tetrahedron Lett. 43 (2002) 4021-4022.
[8] C.W. Tornoe, C. Christensen, M. Meldal, J. Org. Chem. 67 (2002) 3057-3064.
[9] V.V. Rostovtsev, L.G. Green, V.V. Fokin, K.B. Sharpless, Angew. Chem. Int. Ed. 114 (2002) 2708-2711.
[10] T.R. Chan, H. Robert, K.B. Sharpless, V.V. Fokin, Org. Lett. 6 (2004) 2853-2855.
[11] H.A. Orgueira, D. Fokas, Y. Isome, P.C.M. Chan, C.M. Baldino, Tetrahedron Lett. 46 (2005) 2911-2914.
[12] L.D. Pachon, J.H. Van Maarseveen, G. Rothenberg, Adv. Synth. Catal. 347 (2005) 811-815.
[13] A.K. Feldman, B. Colasson, V.V. Fokin, Org. Lett. 6 (2004) 3897-3899.
[14] B. Dervaux, F.E. Du Prez, Chem. Sci. 3 (2012) 959-966.
[15] A. Megia-Fernandez, M. Ortega-Muñoz, J. Lopez-Jaramillo, F. Hernandez-Mateo, F. Santoyo-Gonzalez, Adv. Synth. Catal. 18 (2010) 3306-3320.
[16] K. Lal, P. Rani, ARKIVOC I (2016) 307-341.
[17] E. Taheri, Z. Mirjafary, H. Saeidian, J. Mol. Struc. 1157 (2018) 418-424.
[18] M. Chetia, P.S. Gehlot, A. Kumar, D. Sarma, Tetrahedron Lett. 59 (2017) 397-401.
[19] F. Zhao, Y. Liu, S. Yang, K. Xie, Y. Jiang, Org. Chem. Front. 4 (2017) 1112-1115.
[20] T. Miao, L. Wang, Synthesis (2008) 363-368.
[21] T. Shamim, S. Paul, Catal. Lett. 136 (2010) 260-265.
[22] W.J. Stadelman, Encyclopedia of Food Science and Technology, 2nd ed., John Wiley and Sons, New York, 2000, 593–599.
[23] S. Yoo, J.S. Hsieh, P. Zou, J. Kokoszka, Bioresour. Technol. 100 (2009) 6416-1621.
[24] C. Balázsi, F. Wéber, Z. Kovér, E. Horváth, C. Németh, J. Eur. Ceram. Soc. 27 (2007) 1601-1606.
[25] A. Zarei, Tetrahedron Lett. 53 (2012) 5176-5179.
[26] M. Gupta, M. Gupta, S. Paul, R. Kant, V.K. Gupta, Monatsh. Chem. 146 (2015) 143-148.
[27] M. Bhardwaj, B. Jamwal, S. Paul, Catal. Lett. 146 (2016) 629-644.
[28] H. Torii, M. Nakadai, K. Ishihara, S. Saito, H. Yamamoto, Angew. Chem. 43 (2004) 1983-1986.
[29] J. Garcia-Alvarez, J. Diez, J. Gimeno, Green. Chem. 12 (2010) 2127-2130.
[30] S. Diez-Gonzalez, S.P. Nolan, Angew. Chem. Int. Ed. 47 (2008) 8881-8184.
[31] S. Diez-Gonzalez, E.D. Stevens, S.P. Nolan, Chem. Commun. (2008) 4747-4749.
[32] S. Ozcubuku, E. Ozkal, C. Jimeno, M.A. Pericas, Org. Lett. 11 (2009) 4680-4683.
[33] F. Adam, H. Osman, K. Mohammed Hello, J. Coll. Inter. Sci. 331 (2009) 143-147.
[34] Y.C. Duan, Y.C. Ma, E. Zhang, X.J. Shi, M.M. Wang, X.W. Ye, H.M. Liu, Eur. J. Med. Chem. 62 (2013) 11-19.
[35] A. Fazeli, H. Oskooie, Y. Beheshtiha, M. Heravi, F. Matloubi Moghddam, B.Z. Koushki Foroushani, Naturforsch. 68 (2013) 391-396.
[36] M. Nasr-Esfahani, I. Mohammadpoor-Baltork, A.R. Khosropour, M. Moghadam, V. Mirkhani, S. Tangestaninejad, H. Amiri Rudbari, J. Org. Chem. 79 (2014) 1437-1443.
[37] P. Kasiviswanadharaju, P. Khedar, B. Khungar, A. Kumar, Tetrahedron Lett. 53 (2012) 6761– 6764.
[38] J. Albadi, M. Keshavarz, F. Shirini, M. Vafaie-Nezhad, Catal. Commun. 27 (2012) 17–20.
[39] R. Mirsafaei, M.M. Heravi, Sh. Ahmadi, M.H. Moslemin, T. Hosseinnejad, J. Mol. Catal. A: Chem. 402 (2015) 100–108.
[40] J. Albadi, M. Keshavarz, Syn. Commun. 43 (2013) 2019–2030.
[41] F. Nemati, M.M. Heravi, A. Elhampour, RSC Adv. 5 (2015) 45775-45784.