Efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones using nano-sized protonated ZSM–5 as a biodegradable and reusable solid acid catalyst
الموضوعات : Iranian Journal of CatalysisSedigheh Rostami 1 , Seyed Naser Azizi 2 , Fatemeh Rigi 3
1 - Analytical division, Faculty of Chemistry, University of Mazandaran, Postal code 47416-95447, Babolsar, Iran.|Nano and Biotechnology Research Group. University of Mazandaran, Babolsar, Iran.
2 - Analytical division, Faculty of Chemistry, University of Mazandaran, Postal code 47416-95447, Babolsar, Iran.|Nano and Biotechnology Research Group. University of Mazandaran, Babolsar, Iran.
3 - Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan. Iran.
الکلمات المفتاحية: Catalyst, Hydrothermal, Bagasse, 2, 3-Dihydroquinazolin-4(1H)-ones, H-ZSM-5 nanozeolite,
ملخص المقالة :
Nano-sized protonated ZSM–5 ( H-ZSM-5nanozeolite) was successfully synthesized by the hydrothermal method using the bagasse ash (BGA) as a new silica source. Cultivated BGA in the south of the Caspian Sea (Mazandaran province, Iran) was used for extracting silica powder. H-ZSM-5 was characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electronic microscopy (SEM) and Brunauer–Emmett–Teller (BET), Barrett-Joyner-Halenda (BJH) techniques. The catalytic activity of H-ZSM-5 nanozeolite was evaluated for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones via one-pot three-component reaction of aromatic aldehydes, 2-aminobenzothiazole or 2-aminobenzimidazole and isatoic anhydride under solvent-free conditions. Short reaction time, high yields, a simple experimental procedure in the absence of any toxic solvents and recovery of catalyst are the advantages of this protocol.
[1] A. Corma, H. Garcia, Chem. Rev. 103 (2003) 4307-4366.
[2] J.H. Clark, Acc. Chem. Res. 35 (2002) 791-797.
[3] L. Rao, Resonance 12 (2007) 30-36.
[4] F. Hemmann, C. Jaeger, E. Kemnitz, RSC Adv. 4 (2014) 56900-56909.
[5] A.A. Ismail, R.M. Mohamed, O.A. Fouad, I.A. Ibrahim, Cryst. Res. Technol. 41 (2006) 145-149.
[6] N.Y. Chen, T.F. Degnan, Chem. Eng. Prog. 84 (1988) 32-419.
[7] N.Y. Kang, B.S. Song, C.W. Lee, W.C. Choi, K.B. Yoon, Y.K. Park, Microporous Mesoporous Mater. 118 (2009) 361-372.
[8] R.J. Argauer, G.R. Landolt, US Patent (1972) 3702886.
[9] Y. Cheng, L.J. Wang, J.S. Li, Y.C. Yang, X.Y. Sun, Mater. Lett. 59 (2005) 3427-3430.
[10] N. Viswanadham, R. Kamble, M. Singh, M. Kumar, G.M. Dhar, Catal. Today 141 (2009) 182-186.
[11] S. Kotrel, M.P. Rosynek, J.H. Lunsford, J. Catal. 191 (2000) 55-61.
[12] X. Li, C. Li, J. Zhang, C. Yang, H. Shan, J. Nat. Gas. Chem. 16 (2007) 92-99.
[13] H.T. Yan, R. Le Van Mao, Appl. Catal. A 375 (2010) 63-69.
[14] C. Liu, Y. Deng, Y. Pan, Y. Gu, B. Qiao, X. Gao, J. Mol, Catal. A: Chem. 215 (2004) 195-199.
[15] A.K. Aboul-Gheit, A.E. Awadallah, N.A.K. Aboul-Gheit, E.S.A. Solyman, M.A. Abdel-Aaty, Appl. Catal. A 334 (2008) 304-310.
[16] S.C. Larsen, J. Phys. Chem. C 111 (2007) 8464-8474.
[17] L. Tosheva, V. Valtchev, Chem. Mater. 17 (2005) 2494-2513.
[18] A. Dyer, An Introduction to Zeolite Molecular Sieves, John Wiley, Chichester (1988).
[19] A. Dömling, I. Ugi, Angew. Chem. Int. 39 (2000) 3168-3210.
[20] J. Zhu, H. Bienaymé, Multicomponent Reactions, John Wiley & Sons Inc., New York, 2006.
[21] A. Dömling, Chem. Rev. 106 (2006) 17-89.
[22] Q. Chao, L. Deng, H. Shih, L.M. Leoni, D. Genini, D.A. Carson, J. Med. Chem. 42 (1999) 3860-3873.
[23] (a) M. Hour, L. Huang, S. Kuo, Y. Xia, K. Bastow, Y. Nakanishi, E. Hamel, K.J. Lee, J. Med. Chem. 43 (2000) 4479-4487. (b) C.M. Gupta, A.P. Bhaduri, N.M. Khanna, J. Med. Chem. 11 (1968) 392. (c) Z.S. Zhao, D.O. Arnaiz, B. Griedel, S. Sakata, J.L. Dallas, M. Whitlow, L. Trinh, J. Post, A. Liang, M.M. Morrissey, K.J. Shaw, Bioorg Med. Chem. Lett. 10 (2000) 963.
[24] U. Kalapathy, A. Proctor, J. Schultz, Bioresour. Technol. 73 (2000) 252-257.
[25] M. Abrishamkar, S.N. Azizi, H. Kazemian, Z. Anorg. Allg. Chem. 637 (2011) 154-159.
[26] J.B. Raoof, S.N. Azizi, R. Ojani, S. Ghodrati, M. Abrishamkar, F. Chekin, Int. J. Hydrogen Energ. 36 (2011) 13295-13300.
[27] J.X. Chen, D. Wu, F. He, M.C. Liu, H. Wu, J.C. Ding, W.K. Su, Tetrahedron Lett. 49 (2008) 3814-3818.
[28] A. Shaabani, A. Rahmati, J. Moghimi-Rad, C. R. Chim. 11 (2008) 759-764.
[29] A. Moradi, R. Heydari, M.T. Maghsoodlou, Res. Chem. Intermed. 41 (2015) 7377-7391.
[30] A. Shaabani, A. Rahmati, J. Moghimi-Rad, J. Heterocycl. Chem. 45 (2008) 1629-1632.
[31] G. Mohammadi Ziarani, L. Seiedakbari, P. Gholamzadeh, A. Badiei, Iran. J. Catal. 7 (2017) 137-145.
[32] H.R. Shaterian, A.R. Oveisi, M. Honarmand, Synth. Commun. 40 (2010) 1231-1242.
[33] L. Wu, E-J. Chem. 9 (2012) 739-743.