Eggshell-supported-Cu(II) salophen complex: An efficient and green catalyst for synthesis of propargylamines under solvent-free conditions
الموضوعات : Iranian Journal of CatalysisMohammad Bakherad 1 , Ali Keivanloo 2 , Amir Hossein Amin 3 , Raheleh Doosti 4 , Ommolbanin Hoseini 5
1 - School of Chemistry, Shahrood University of Technology, Shahrood, Iran.
2 - School of Chemistry, Shahrood University of Technology, Shahrood, Iran.
3 - School of Chemistry, Shahrood University of Technology, Shahrood, Iran.
4 - School of Chemistry, Shahrood University of Technology, Shahrood, Iran.
5 - School of Chemistry, Shahrood University of Technology, Shahrood, Iran.
الکلمات المفتاحية: Aldehyde, amine, Eggshell-supported-Cu(II) catalyst, Alkyne, propargylamine,
ملخص المقالة :
In this report, the synthesis, characterization, and application of the eggshell-supported-Cu(II) salophen complex, as a novel and heterogeneous catalyst, is described. The catalyst is characterized by the UV, XRD, FT-IR, and SEM techniques. The eggshell-supported-Cu(II) salophen complex is a versatile, green, inexpensive, and simple catalyst used for the multi-component reactions (MCRs) of terminal alkynes, aldehydes, and secondary amines to give the corresponding propargylamines at 80 °C under the solvent-free conditions. The proposed methodology offers several advantages such as excellent product yield, simple procedure, and mild conditions. On the other hand, the synthesized catalyst could be removed from the reaction mixture by simple filtration, and reused for up to six runs.
[1] A. Domling, Chem. Rev. 106 (2006) 17-89.
[2] C. Wei, Z. Li, C.-J. Li, Synlett (2004) 1472-1483.
[3] L. Zani, C. Bolm, Chem. Commun. (2006) 4263-4275.
[4] V.V. Kouznetsov, L.Y. Vargas Mendez, Synthesis (2008) 491-507.
[5] C. Binda, F. Hubalek, M. Li, Y. Herzig, J. Sterling, D.E. Edmondson, A. Mattevi, J. Med. Chem. 47 (2004) 1767-1774.
[6] I.E. Kopka, Z.A. Fataftah, M.W. Rathke, J. Org. Chem. 45 (1980) 4616-4622.
[7] Y. Imada, M. Yuasa, I. Nakamura, S.-I. Murahashi, J. Org. Chem. 59 (1994) 2282-2284.
[8] S. Czernecki, J.-M. Valéry, J. Carbohydr. Chem. 9 (1990) 767-770.
[9] T. Murai, Y. Mutoh, Y. Ohta, M. Murakami, J. Am. Chem. Soc. 126 (2004) 5968-5969.
[10] X. Zhang, A. Corma, Angew. Chem. Int. Ed. 47 (2008) 4358-4361.
[11] B. J. Borah, S. J. Borah, L. Saikia, D. K. Dutta, Catal. Sci. Technol. 4 (2014) 1047-1054.
[12] M. J. Albaladejo, F. Alonso, Y. Moglie, M. Yus, Eur. J. Org. Chem. 2012 (2012) 3093-3104.
[13] M. Kidwai, V. Bansal, A. Kumar, S. Mozumdar, Green Chem. 9 (2007) 742-745.
[14] C.J. Li, C. Wei, Chem. Commun. (2002) 268-269.
[15] R. Maggi, A. Bello, C. Oro, G. Sartori, L. Soldi, Tetrahedron 64 (2008) 1435-1439.
[16] Y. Zhang, P. Li, M. Wang, L. Wang, J. Org. Chem. 74 (2009) 4364-4367.
[17] S. Sakaguchi, T. Mizuta, M. Furuwan, T. Kubo, Y. Ishii, Chem. Commun. (2004) 1638-1639.
[18] V.K.-Y. Lo, K.K.-Y. Kung, M.-K. Wong, J. Organomet. Chem. 694 (2009) 583-591.
[19] K. Tanaka, F. Toda, Chem. Rev. 100 (2000) 1025-1074.
[20] S. Yoo, J.S. Hsieh, P. Zou, J. Kokoszka, Bioresour. Technol. 100 (2009) 6416-6421.
[21] C. Balázsi, F. Wéber, Z. Kovér, E. Horváth, C. Németh, J. Eur. Ceram. Soc. 27 (2007) 1601-1606.
[22] Z. Wei, C. Xu, B. Li, Bioresour. Technol. 100 (2009) 2883-2885.
[23] N. Viriya-empikul, P. Krasae, B. Puttasawat, B. Yoosuk, N. Chollacoop, K. Faungnawakij, Bioresour. Technol. 101 (2010) 3765-3767.
[24]. Y. Gao, C. Xu, Catal. Today 190 (2012) 107–111.
[25] Y.C. Sharma, B. Singh, J. Korstad, Energy Fuels 24 (2010) 3223–3231.
[26] A. Montilla, M.D. del Castillo, M.L. Sanz, A. Olano, Food Chem. 90 (2005) 883–890.
[27] G. Busca, Chem. Rev. 110 (2010) 2217–2249.
[28] E. Mosaddegh, A. Hassankhani, Catal. Commun. 33 (2013) 70-75.
[29] T. Witoon, Ceram. Int. 37 (2011) 3291-3298.
[30] J.J.J.M. Donners, B.R. Heywood, E.W. Meijer, R.J.M. Nolte, N.A.J.M. Sommerdijk, Chem. Eur. J. 8 (2002) 2561-2567.
[31] M. Salavati-Niasari, M. Shakouri-Arani, F. Davar, Microporous Mesoporous Mater. 116 (2008) 77–85
[32] M. Joshaghani, M.B. Gholivand, F. Ahmadi, Spect. Chim. Acta Part A 70 (2008) 1073-1078.
[33] H. Sharghi, A. Khohnood, R. Khalifeh, Iran. J. Sci. Tech. A1 (2012) 25-35.
[34] S. Samai, G.C. Nandi, M.S. Sing, Tetrahedron Lett. 51 (2010) 5555-5558.
[35] M. Tajbaksh, M. Farhang, H. Mardani, R. Hosseinzadeh, Y. Sarrafi, Chin. J. Catal. 34 (2013) 2217-2222.
[36] H. Naeimi, M. Moradian, Tetrahedron: Asymmetry 25 (2014) 429-434.
[37] B.M. Choudary, C. Sridhar, M.L. Kantam, B. Sreedhar, Tetrahedron Lett. 45 (2004) 7319-7321.
[38] B. Sreedhar, A.S. Kumar, P. S. Reddy, Tetrahedron Lett. 51 (2010) 1891-1895.
[39] B. Sreedhar, P.S. Reddy, C.S.V. Krishna, P.V. Babu, Tetrahedron Lett. 48 (2007) 7882-7886.
[40] E. Ramu, R. Varala, N. Sreelatha, S.R. Adapa, Tetrahedron Lett. 48 (2007) 7184-7190.
[41] P. Li, L. Wang, Tetrahedron 63 (2007) 5455-5459.
[42] C. Wei, C.J. Li, J. Am. Chem. Soc. 125 (2003) 9584-9585.
[43] C. Wei, Z. Li, C.J. Li, Org. Lett. 5 (2003) 4473-4475.
[44] P. Li, L. Wang, Y. Zhang, M. Wang, Tetrahedron Lett. 49 (2008) 6650-6654.