Mesolite catalyzed one pot synthesis of quinoline-3-carbonitrile derivatives
الموضوعات : Iranian Journal of CatalysisGanesh Pawar 1 , Rameshwar Magar 2 , Machhindra Lande 3
1 - Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.), 431004, India.
2 - Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.), 431004, India.
3 - Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.), 431004, India.
الکلمات المفتاحية: aniline, Malononitrile, Modification of natural zeolite, Mesolite, Quinoline-3-carbonitile, Benzaldehyde,
ملخص المقالة :
Natural mesolite type zeolite was collected, modified by sulfuric acid treatment and characterized by using Powder-X ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR).Temperature programmed ammonia desorption (NH3-TPD), Brunauer-Emmer-Teller (BET) surface area analysis. Modified dealuminated mesolite shows an efficient catalytic activity for the one-pot synthesis of quinoline-3-carbonitrile derivatives, via three-component cyclocondensation of benzaldehyde, malononitrile and aniline. The present method offers several advantages over the reported methods like simple and inexpensive modification of the catalyst, mild reaction conditions and easy separation of the catalyst, simple work-up procedures, non-chromatographic separation and purification of desired product, excellent yield and reusability of the catalyst.
[1] R.C. Cioc, E. Ruijter, V.A. Romano, Green Chem. 16 (2014) 2958-2975.
[2] P.M. Joseph, Nat. Prod. Rep. 24 (2007) 223-246.
[3] S. Amish, Raj. Dilipsinh, J. Saudi Chem. Soc. 19 (2015) 73-82.
[4] I. A. Saleh, M.A. Areej, M.A. Ahmed, N. Eman, M.G. Mostafa, Eur. J. Med. Chem. 45 (2010) 738-744.
[5] A.L. Don, C.R Elena, B. Benoit, H. Hasin-Hung, D. Latasha, J. Laure, E. Mourad, B. Katja, L.W. David, D. C. Elisabeth, Org. Biomol. Chem. 10 (2012) 6375.
[6] L.Z. Shu, Z. Xin, J.Z. Shi, H. Yu. Hong, G. Ping, Chin. Chem. Lett. 21 (2010) 939-942.
[7] P. Natasha, N. Raja, E. Katja, L. William, K.Z. Grace, K. Marijeta, D. Marie-Hélène, H. Marijana, Eur. J. Med. Chem. 80 (2014) 218-227.
[8] K.S. Kumar, S.K. Kumar, B.Y. Shreenivas, D.R. Gorja, R. Kapavarapu, D. Rambabu, G.R. Krishna, C.M. Reddy, M.V. Basaveswara, K.V.L. Parasa, M. Pal, Bioorg. Med. Chem. 20 (2012) 2199-2207.
[9] E. Debroye, G. Dehaen, V.S. Eliseeva, S, V.L. Elst, N. R. Muller, K. Binnemans, N.T. Parac-Vogt, Dalton Trans. 41 (2012) 10549-10556.
[10] A.K. Salman, M.A. Abdullah, H.A. Sadd, M.F. Hassan, A.E. Sammy, Spectrochim. Acta, Part A 133 (2014) 141-148.
[11] A. Khalafi-Nezhad, S. Sarikhani, E. Shaikhi Shahidzadeh, F. Panahi, Green Chem. 14 (2012) 2876-2884.
[12] G.K. Nader, Chin. J. Cat. 35 (2014) 1858-1863.
[13] G.M. Ziarani, N. Hosseini Nasab, M. Rahimifard, A. Abolhasani Soorki, J. Saudi Chem. Soc. 9 (2015) 676-681.
[14] Y. Venkatewarlu, K.R. Kumar, P. Leelavati, Org. Commun. 5 (2012) 120-127.
[15] E.A. Gilandeh, S.C. Azimia, K.R. Moghadama, A.M. Barkchaib, Iran. J. Catal. 3 (2013) 15-20.
[16] A. Chandra, S. Upadhyay B. Singh, N. Sharma, M.R. Singh, Tetrahedron Lett. 67 (2011) 9219-9224.
[17] J. Mcnulty, R. Vemula, C. Bordon, R. Yolken, J.B. Lorraine, Org. Biomol. Chem. 12 (2014) 255-260.
[18] D.W. Breck, Zeolite Molecular Sieves, Structure, Chemistry and Use. John Wiley & Sons, New York, London, Sydney, Toronto, 1974.
[19] S.M. Baghbanian, N. Rezaei, H. Tashakkorin, Green Chem. 15 (2013) 3446-3458.
[20] E. Erdem, N. Karapinar, R. Donat, J. Colloid Interface Sci. 280 (2004) 309-314.
[21] S. Wang, Z.H. Zhu, J. Hazard. Mater. 136 (2006) 946-952.
[22] K. Smith, G.A. El-Hiti, Green Chem. 13 (2011) 1579-1608.
[23] V.N. Sheemol, B. Tayagi, R.V. Jasara, J. Mol. Catal. A: Chem. 21 (2004) 201-208.
[24] T. Pinto, P Arquilliere. G. Niccolai, F. Lefebvre, V. Dufaud, New J. Chem. 39 (2015) 5300-5308.
[25] D. Prochazkova, L. Kurfirtova, J. Pavlatova, Catal. Today 179 (2012) 78-84.
[26] P. Gillet, J.M. Malezieux, J.P. Itie, Am. Mineral. 81 (1996) 651-657.
[27] V. Valtchev, G. Majano, S. Mintova, J.P. Ramirez, Chem. Soc. Rev. 42 (2013) 263-290.
[28] L.S. Gadekar, S.S. Katkar, S.R. Mane, B.R. Arbad, M. K. Lande, Bull. Korean Chem. Soc. 30 (2009) 2532-2534.
[29] S.S. Katkar, P.H. Mohite, L.S. Gadekar, B.R. Arbad, M.K. Lande, Green Chem. Lett. Rev. 3 (2010) 287-292.
[30] L.S. Gadekar, B.R. Arbad, M.K. Lande, Bull. Korean Chem. Soc. 30 (2009) 2532-2534.
[31] M.M.J. Treacy, J.B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites, 5th ed., Amsterdam: Elsevier (2007).
[32] S. Stefanidis, K. Kalogiannis, E.F. Iliopoulou, A.A. Lappas, J. Martínez Triguero, M.T. Navarro, A. Chicab F. Rey, Green Chem. 15 (2013) 1647-1658.
[33] J.N. Kondo, R. Nishitani, E. Yoda, T. Yokoi, T. Tatsumi, K. Domen. Phys. Chem. 12 (2010) 11576-11586.
[34] P.E. Poh, H. Nur, M.N.M. Muhid, H. Hamdan, Catal. Today 114 (2006) 257-262.