Formaldehyde measurement based on its electrocatalytic oxidation by Ni-TiO2 nanoparticles/chitosan modified carbon paste electrode as an effective method
الموضوعات : Iranian Journal of CatalysisEbrahim Zarei 1 , Mohammad Reza Jamali 2 , Jaber Bagheri 3
1 - Department of Basic Sciences, Farhangian University, Tehran, Iran.
2 - Department of Chemistry, Payame Noor University, Tehran, Iran.
3 - Department of Chemistry, Payame Noor University, Tehran, Iran.
الکلمات المفتاحية: TiO2 nanoparticles, Chitosan, Modified carbon paste electrode, Measurement, Electrocatalytic oxidation, Formaldehyde,
ملخص المقالة :
In this work, for the first time, a new and effective bulk modified carbon paste electrode (CPE) was prepared by TiO2 nanoparticles and chitosan and then Ni2+ ions were incorporated to this electrode by immersion of the modified electrode in nickel chloride solution. The values of electron transfer coefficient, charge-transfer rate constant and electrode surface coverage for Ni(II)/Ni(III) redox couple of the TiO2/chitosan modified carbon paste electrode (Ni-TiO2/CHIT/CPE) were found to be 0.66, 3.28 × 10-1 s-1 and 5.14 × 10-8 mol cm-2, respectively. The prepared Ni-TiO2/CHIT/CPE material was characterized by scanning electron microscopy and X‐ray diffractometry. The electrochemical behaviour of the Ni-TiO2/CHIT/CPE towards oxidation of formaldehyde was evaluated and proved. The effects of various factors on the efficiency of electrocatalytic oxidation of formaldehyde were optimized. Under the optimized condition, a calibration curve was obtained in the linear dynamic range of 2.80 × 10-4 to 2.50 × 10-2 mol L-1 with detection limit of 7.14 × 10-5 mol L-1 (3σ/slope) for formaldehyde determination. Also, the method was successfully applied for formaldehyde measurement in the real sample.
[1] M. Noroozifar, M. Khorasani-Motlagh, M.S. Ekrami-Kakhki, R. Khaleghian-Moghadam, J. Appl. Electrochem. 44 (2014) 233-243.
[2] A. Curulli, G.D. Carlo, G.M. Ingo, C. Riccucci, D. Zane, C. Bianchini, Electroanalysis 24 (2012) 897-904.
[3] M. Srivastava, S.K. Srivastava, N.R. Nirala, R. Prakash, Anal. Methods 6 (2014) 817-824.
[4] M. Noroozifar, M. Khorasani-Motlagh, M.S. Ekrami-Kakhki, R. Khaleghian-Moghadam, J. Power Sources 248 (2014) 130-139.
[5] R.A. Mirzaie, F. Hamedi, Iran. J. Catal. 5 (2015) 275-283.
[6] M.H. Nobahari, A. Nozad Golikand, M. Bagherzadeh, Iran. J. Catal. 7 (2017) 327-335.
[7] A. Ehsani, M. Hadi, E. Kowsari, S. Doostikhah, J. Torabian, Iran. J. Catal. 7 (2017) 187-192.
[8] A. Nezamzadeh Ejhieha, N. Masoudipour, Anal. Chim. Acta 658 (2010) 68-74.
[9] A. Naeemy, A. Mohammadi, N. Assi, J. Anal. Chem. 72 (2017) 783-792.
[10] M. Nosuhi, A. Nezamzadeh-Ejhieh, Electrochim. Acta 223 (2017) 47-62.
[11] A. Ehsani, R. Asgari, A. Rostami-Vartooni, H.M. Shiri, A. Yeganeh-Faal, Iran. J. Catal. 6 (2016) 269-274.
[12] C.M. Welch, R.G. Compton, Anal. Bioanal. Chem. 384 (2006) 601-619.
[13] S.K. Lunsford, H. Choi, J. Stinson, A. Yeary, D.D. Dionysiou, Talanta 73 (2007) 172-177.
[14] S. Yuan, S. Hu, Electrochim. Acta 49 (2004) 4287-4293.
[15] S.S. Kalanur, J. Seetharamappa, S.N. Prashanth, Colloids Surf. B 78 (2010) 217-221.
[16] S. Mahshid, S. Luo, L. Yang, S.S. Mahshid, M. Askari, A. Dolati, Q. Cai, J. Nanosci. Nanotechnol. 11 (2011) 6668-6675.
[17] B. Norouzi, S. Sarvinehbaghi, M. Norouzi, Russ. J. Electrochem. 50 (2014) 1020-1026.
[18] H.R. Gerberich, G.C. Seaman, 4th ed., Formaldehyde: Encyclopedia of Chemical Technology, vol. 11, Wiley, New York, 1994, p. 929.
[19] P. Patnaik, Handbook of Environmental Analysis: Chemical Pollutants in Air, Water, Soil, and Solid Wastes, CRC Press, Boca Raton, FL, 1997.
[20] M.A. Flyvholm, P. Andersen, Am. J. Ind. Med. 24 (1993) 533-552.
[21] H. Xie, C. Sheng, X. Chen, X. Wang, Z. Li and J. Zhou, Sens. Actuators B Chem. 168 (2012) 34-38.
[22] L. del Torno-de Román, M.A. Alonso-Lomillo, O. Domínguez-Renedo, C. Merino-Sánchez, M.P. Merino-Amayuelas, M.J. Arcos-Martínez, Talanta 86 (2011) 324-328.
[23] Y. Zhang, M. Zhang, Z. Cai, M. Chen, F. Cheng, Electrochim. Acta 68 (2012) 172-177.
[24] Q. Yi, F. Niu, W. Yu, Thin Solid Films 519 (2011) 3155-3161.
[25] J.B. Raoof, R. Ojani, S.R. Nadimi, Electrochim. Acta 49 (2004) 271-280.
[26] C.A. Rodrigues, E. Stadler, M.C.M. Laranjeira, and V. Drago, J. Braz. Chem. Soc. 8 (1997) 7-11.
[27] E. Guibal, Sep. Purif. Technol. 38 (2004) 43-47.
[28] A. Samadi-Maybodi, S.K.H. Nejad-Darzi, M.R. Ganjali, H. Ilkhani, J. Solid State Electrochem. 17 (2013) 2043-2048.
[29] K. Nagashree, M. Ahmed, J. Solid State Electrochem. 14 (2010) 2307-2320.
[30] S.K. Hassaninejad-Darzi, M. Rahimnejad, J. Iran. Chem. Soc. 11 (2014) 1047-1056.
[31] M. Fleischmann, K. Korinek, D. Pletcher, J. Electroanal. Chem. 31 (1971) 39-49.
[32] M.S. Tohidi, A. Nezamzadeh-Ejhieh, Inter. J. Hydrogen Energy 41 (2016) 8881-8892.
[33] F. Alidusty, A. Nezamzadeh-Ejhieh, Inter. J. Hydrogen Energy 41 (2016) 6288-6299.
[34] A. Ahmadi, A. Nezamzadeh-Ejhieh, J. Electroanal. Chem. 801 (2017) 328-337.
[35] C.B. Jacobs, M.J. Peairs, B.J. Venton, Anal. Chim. Acta 662 (2010) 105-127.
[36] W. Lian, S. Liu, J. Yu, X. Xing, J. Li, M. Cui, J. Huang, Biosens. Bioelectron. 38 (2012) 163-169.
[37] M. Khodari, E.M. Rabie, H.F. Assaf, Int. J. Sci. Res. 5 (2016) 1501-1505.
[38] M.T.M. Koper, M. Hachkar, B. Beden, J. Chem. Soc. Faraday Trans. 92 (1996) 3975-3982.
[39] C. Zhao, M. Li, K. Jiao, J. Anal. Chem. 61 (2006) 1204-1208.
[40] J.B. Raoof, R. Ojani, S. Abdi, S.R. Hosseini, Int. J. Hydrogen Energy 37 (2012) 2137-2146.
[41] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley-Interscience, New York, 2001.
[42] S.N. Azizi, S. Ghasemi, H. Yazdani-Sheldarrei, Int. J. Hydrogen Energy 38 (2013) 127741-12785.
[43] E. Laviron, J. Electroanal. Chem. 101 (1979) 19-28.
[44]. D.K.J. Gosser, Cyclic voltammetry-simulation and analysis of reaction mechanism (Wiley-VCH, New York, USA, 1993.
[45] R.S. Nicholson, I. Shain, Anal. Chem. 36 (1964) 706-723.
[46] M.H. Sheikh-Mohseni, A. Nezamzadeh-Ejhieh, Electrochim. Acta 147 (2014) 572-581.
[47] Y.I. Korpan, M.V. Gonchar, A.A. Sibirny, C. Martelet, A.V. Elskaya, T.D. Gibson, A.P. Soldatkin, Biosens. Bioelectron. 15 (2000) 77-83.
[48] O. Demkiv, O. Smutok, S. Paryzhak, G. Gayda, Y. Sultanor, D. Guschin, H. Shkil, W. Schuhmann, M. Goncher, Talanta 76 (2008) 837-846.
[49] Q. Yi, F. Niu, W. Yu, Thin Solid Films 519 (2011) 3155-3161.
[50] P.W. Wu, C.C. Chang, S.S. Chou, J. Food Drug Anal. 11 (2003) 8-15.