None-platinum electrode catalysts and membranes for highly efficient and inexpensive H2 production in microbial electrolysis cells (MECs): A review
الموضوعات : Iranian Journal of CatalysisAbudukeremu Kadier 1 , Washington Logroño 2 , Pankaj Kumar Rai 3 , Mohd Sahaid Kalil 4 , Azah Mohamed 5 , Hassimi Abu Hasan 6 , Aidil Abdul Hamid 7
1 - Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia.
2 - Department of Biotechnology, University of Szeged, Szeged, Hungary. | Centro de Investigación de Energías Alternativas y Ambiente, Escuela Superior Politécnica de Chimborazo, Chimborazo,
Ecuador.
3 - Department of Biotechnology and Bioinformatics Center, Barkatullah University (BU), Bhopal-462026, India.
4 - Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia.
5 - Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (UKM), Bangi 43600, Selangor, Malaysia.
6 - Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia.
7 - School of Biosciences and Biotechnology, Faculty of Science and Technology, National University of Malaysia (UKM) , 43600 UKM Bangi, Selangor, Malaysia.
الکلمات المفتاحية: Hydrogen production, Microbial electrolysis cell (MEC), Anode materials, Cathode catalysts, Stainless steel (SS), Hydrogen production rate (HPR), Biocathode,
ملخص المقالة :
Microbial electrolysis cell (MEC) is a gripping bio-electrochemical device producing H2 gas from renewable biomass while at the same time treat wastewater. Through extensive global research efforts in the latest decade, the performance of MECs, including energy efficiency, hydrogen production rate (HPR), and hydrogen recovery have achieved significant breakthroughs. However, employing a low-cost, stable and high efficient cathode to replace platinum catalyzed cathode (Pt/C) is the greatest challenge for large-scale industrialization of MEC. Numerous studies have demonstrated that the performance of MEC directly depends on the kinetics of the anode and cathode reactions within the electrolysis cell, with the performance of the electrode catalyst highly affected by the materials they are made from. In a relatively short space of time, a wide range of electrode materials have been tested to amplify the performance of MECs, such as carbon-based electrode catalysts have emerged as promising electrode materials for both anode and cathode construction. Composite materials have also shown to have the potential to become materials of choice for electro-catalyst manufacture. More recently, various transition metal oxides and alloys have been extensively examined as alternatives to conventional expensive noble-metals like platinum for hydrogen evaluation reaction (HER) in MECs. Numerous studies have confirmed that stainless steel, Ni alloys, and Pd nanoparticle decorated cathode are worth mentioning and have very good efficiency. In the present article, we present a comprehensive review centered on the development of a low-cost and high efficient electrode materials and membrane to boost the performance of MECs, including anode, cathode, and membrane.
[1] International Energy Agency (IEA). International Energy Outlook 2016. Available at: http://www.eia.gov/forecasts/ieo
[2] A. Kadier, M.S. Kalil, P. Abdeshahian, K. Chandrasekhar, A. Mohamed, N.F. Azman, W. Logroño, Y. Simayi, A.A. Hamid, Renew. Sust. Energ. Rev. 61 (2016) 501-525.
[3] M. Balat, M. Balat, Int. J. Hydrogen Energy 61 (2009) 3589-3603.
[4] P. Abdeshahian, N.K.N. Al-Shorgani, N.K.M. Salih, H. Shukor, A. Kadier, A.A. Hamid, M.S. Kalil, Int. J. Hydrogen Energy 39 (2014) 12524–12531.
[5] M. Pudukudy, A. Kadier, Z. Yaakob, M.S. Takriff, Int. J. Hydrogen Energy 41 (2016) 18509-18521.
[6] N.F. Azman, P. Abdeshahian, A. Kadier, N.K.N. Al-Shorgani, N.K.M. Salih, I. Lananan, A.A. Hamid, M.S. Kalil, Int. J. Hydrogen Energy 41 (2016) 145-156.
[7] A.F. Ghoniem, Prog. Energy Combust. Sci. 37 (2011) 15-51.
[8] N.F. Azman, P. Abdeshahian, A. Kadier, H. Shukor, N.K.N. Al-Shorgani, A.A. Hamid, M.S. Kalil, Renew. Energ. 93 (2016) 700-708.
[9] A. Kadier, Y. Simayi, P. Abdeshahian, N.F. Azman, K. Chandrasekhar, M.S. Kalil, Alexandria Eng. J. 55 (2016) 427- 443.
[10] S. Cheng, B.E. Logan, Bioresour. Technol. 102 (2011) 3571-3574.
[11] V.J. Watson, M. Marta Hatzell, B.E. Logan, Bioresour. Technol. 1952 (2015) 51-56.
[12] C. Ramos, G. Buitron, I. Moreno-Andrade, R. Chamy, Int. J. Hydrogen Energy 37 (2012) 13288-13295.
[13] G. Kumar, C.Y. Lin, Int. J. Hydrogen Energy 38 (2013) 63-72.
[14] C. Hernandez-Mendoza, G. Buitron, J. Chem. Technol. Biotechnol. 89 (2013) 143-149.
[15] A.A Carmona-Martínez, E. Trably, K. Milferstedt, R. Lacroix, L. Etcheverry, N. Bernet, Water. Res. 15 (2015) 149-56.
[16] L. Schlapbach, A. Züttel, Nature 414 (2001) 353-358.
[17] C.Y. Lin, C. H. Lay, C. Y. Chu, B. Sen, G, Kumar, C.C. Chen, Int. J. Hydrogen Energy 37 (2012) 15632-15642.
[18] R.G. Saratale, G.D. Saratale, A. Pugazhendhi, G. Zhen, G. Kumar, A. Kadier, P. Sivagurunathan, Chemosphere 177 (2017) 176-188.
[19] H. Liu, H. Hu, J. Chignell, Y. Fan, Biofuels 1 (2010) 129–142.
[20] X.M. Guo, E. Trably, E. Latrille, H. Carrere, J.P. Steyer, Int. J. Hydrogen Energy 35 (2010) 10660-10673.
[21] Z. Lai, M. Zhu, X. Yang, J. Wang, S. Li, Biotechnol Biofuels 7 (2014) 1-11.
[22] M.Z. Khan, A. S. Nizami, M. Rehan, O.K.M. Ouda, S. Sultana, I.M Ismail, K. Shahzad, Appl. Energy 185 (2017) 410–420.
[23] G. Kumar, P. Sivagurunathan, A. Pugazhendhi, N.B.D. Thi, G. Zhen, K. Chandrasekhar, A. Kadier, Energy Convers. Manage. 141(2017) 390–402.
[24] M.Y. Azwar, M.A. Hussain, A. K. Abdul-Wahab, Renew. Sust. Energ. Rev. 31 (2014) 158-173.
[25] M. Junghare, S. Subudhi, B. Lal, Int. J. Hydrogen Energy 37 (2012) 3160- 3168.
[26] S. Ust’ak, B. Havralnd , J.O.J. Munoz, E.C. Fernandez, J. Lachman, Int. J. Hydrogen Energy 32 (2007) 1736-1741.
[27] S. Manish, R. Banerjee, Int. J. Hydrogen Energy 33 (2008) 279-286.
[28] R. Datar, J. Huang, P.C. Maness, A. Mohagheghi, S. Czernik, E. Chornet, Int. J. Hydrogen Energy 32 (2007) 932-939.
[29] P. Lin, L. Whang, Y. Wu, W. Ren, C. Hsiao, S. Li, J. Chang, Int. J. Hydrogen Energy 32 (2007) 1728-1735.
[30] C. Li, H.H.P. Fang, Crit. Rev. Env. Sci. Technol. 37 (2007) 1-39.
[31] A. Kadier, Y. Simayi, M.S. Kalil, P. Abdeshahian, A.A. Hamid, Renew. Energ. 71 (2014) 466-472.
[32] G. Kumar, R.G. Saratale, A. Kadier, P. Sivagurunathan, G. Zhen, S.H. Kim, G.D. Saratale, Chemosphere 177 (2017) 84-92.
[33] A. Kadier, P. Abdeshahian, Y. Simayi, M. Ismail, A.A. Hamid, M.S. Kalil, Energy 90 (2015) 1556-1562.
[34] W. Logroño, M. Pérez, G. Urquizo, A. Kadier, M. Echeverría, C. Recalde, G. Rákhely, Chemosphere 176 (2017) 378-388.
[35] A.S. Deval, H.A. Parikh, A. Kadier, K. Chandrasekhar, A.M. Bhagwat, A.K. Dikshit, Int. J. Hydrogen Energy 42 (2017) 1130-1141.
[36] R.A. Rozendal, H.V.M. Hamelers, K. Rabaey, J. Keller, C.J.N. Buisman, Trends. Biotechnol. 26 (2008) 450-459.
[37] J. Miyake, M. Miyake, Y. Asada, J. Biotechnol. 70 (1999) 89-101.
[38] A. Kadier, Y. Simayi, W. Logrono, M.S. Kalil, Iran. J. Hydrogen Fuel Cell 2 (2015) 85-97.
[39] S. Cheng, D. Xing, D.F. Call, B.E. Logan, Environ. Sci. Technol. 43 (2009) 3953-3958.
[40] R.A. Rozendal, E. Leone, J. Keller, K. Rabaey, Electrochem. Commun. 11 (2009) 1752-1755.
[41] J.B.A. Arends, S. Van Denhouwe, W. Verstraete, N. Boon, K. Rabaey, Bioresour. Technol. 155 (2014) 352-358.
[42] K.J.J. Steinbusch, E. Arvaniti, H.V.M. Hamelers, C.J.N. Buisman, Bioresour. Technol. 100 (2009) 3261-3267.
[43] R.A. Rozendal, H.V.M. Hamelers, G.J.W. Euverink, S.J. Metz, C.J.N. Buisman, Int. J. Hydrogen Energy 31 (2006) 1632-1640.
[44] L. Lu, Z.J. Ren, Bioresour. Technol. 215 (2016) 254-264.
[45] B.E. Logan, Microbial fuel cells. John Wiley and Sons, 2008.
[46] S. Cheng, B.E. Logan, Proc. Natl. Acad. Sci. USA. 104 (2007) 18871-18873.
[47] R.A. Rozendal, H.V.M. Hamelers, R.J. Molenkamp, C.J.N. Buisman, Water. Res. 41 (2007) 1984-1994.
[48] C.I. Torres, A.K. Marcus, H.S. Lee, P. Parameswaran, R. Krajmalnik-Brown, B.E. Rittmann, FEMS Microbiol. Rev. 34 (2010) 3-17.
[49] D.K. Newman, R. Kolter, Nature 405 (2000) 94-97.
[50] M.E. Hernandez, A. Kappler, D.K. Newman, Appl. Environ. Microb. 20 (2004) 921-928.
[51] H. Von Canstein, J. Ogawa, S. Shimizu, J.R. Lloyd, Appl. Environ. Microb. 74 (2008) 615-623.
[52] G. Reguera, K.D. McCarthy, T. Mehta, J.S. Nicoll, M.T. Tuominen, D.R. Lovley, Nature 435 (2005) 1098-1101.
[53] Y.A. Gorby, S. Yamina, J.S. Mclean, K.M. Rosso, D. Moyles, A. Dohnalkova, T.J. Beveridge, I.S. Chang, B.H. Kim, K.S. Kim, D.E. Culley, S.B. Reed, M.F. Romine, D.A. Saffarini, E.A. Hill, L. Shi, D.A. Elias, D.W. Kennedy, G. Pinchuk, K. Watanabe, S. Ishii, B. Logan, K.H. Nealson, J.K. Fredrickson, Proc. Natl. Acad. Sci. USA. 103 (2006) 11358-11363.
[54] B.E. Logan, J.M. Regan, Trends. Microbiol. 14 (2006) 512-518.
[55] B.E. Logan, D. Call, S. Cheng, H.V.M. Hamelers, T.H.J.A. Sleutels, A.W. Jeremiasse, Environ. Sci. Technol. 42 (2008) 8630-8640.
[56] H. Liu, S. Grot, B.E. Logan, Environ. Sci. Technol. 39 (2005) 4317-4320.
[57] B. Logan, S. Grot, T.E. Mallouk, H. Liu, US Patent (2010) 77091134.
[58] T. Saito, M. Mehanna, X. Wang, R.D. Cusick, Y. Feng, M.A. Hickner, B.E. Logan, Bioresour. Technol. 102 (2011) 395–398.
[59] T.H.J.A. Sleutels, A. Ter Heijne, C.J.N. Buisman, H.V.M. Hamelers, Int. J. Hydrogen Energy 38 (2013) 7201-7208.
[60] A.W. Jeremiasse, J. Bergsma, J.M. Kleijn, M. Saakes, C.J.N. Buisman, M. Cohen Stuar, Int. J. Hydrogen Energy 36 (2011) 10482-10489.
[61] S. Freguia, K. Rabaey, Z. Yuan, J. Keller, Electrochim. Acta 53 (2007) 598-603.
[62] K. Guo, X. Tang, Z. Du, H. Li, Biochem. Eng. J. 51 (2010) 48-52.
[63] B.D. Gusseme, M. Soetaert, T. Hennebel, L. Vanhaecke, N. Boon, W. Verstraete, Microb. Biotechnol. 5 (2011) 396-402.
[64] B.R. Dhar, Y. Gao, H. Yeo, H.S. Lee, Bioresour. Technol. 148 (2013) 208-214.
[65] D.F. Call, B.E. Logan, Environ. Sci. Technol. 42 (2008) 3401-3406.
[66] D.F. Call, M.D. Merrill, B.E. Logan, Environ. Sci. Technol. 43 (2009) 2179-2183.
[67] P.A. Selembo, M.D. Merrill, B.E. Logan, J. Power Sources 190 (2009) 271-278.
[68] P.A. Selembo, M.D. Merrill, B.E. Logan, Int. J. Hydrogen Energy 35 (2010) 428-437.
[69] J.R. Ambler, B.E. Logan, Int. J. Hydrogen Energy 36 (2011) 160-166.
[70] Y. Zhang, M.D. Merrill, B.E. Logan, Int. J. Hydrogen Energy 35 (2010) 12020-12028.
[71] J.Y. Nam, B.E. Logan, Int. J. Hydrogen Energy 37 (2012) 18622-18628.
[72] R.D. Cusick, M.L. Ullery, B.A. Dempsey, B.E. Logan, Water Res. 54 (2014) 297-306.
[73] B.E. Logan, S. Cheng, V. Watson, G. Estadt, Environ. Sci. Technol. 41 (2007) 3341-3346.
[74] V. Flexer, J. Chen, B.C. Donose, P. Sherrell, G.G. Wallace, J. Keller, Energy. Environ. Sci. 6 (2013) 1291-1298.
[75] I. Ivanov, L. Ren, M. Siegert, B.E. Logan, Int. J. Hydrogen Energy 38 (2013)13135–13142.
[76] H. Omidi, A. Sathasivan, Int. Biodeter. Biodegr. 85 (2013) 688–692.
[77] K. Guo, B.C. Donose, A.H. Soeriyadi, A. Prevoteau, S.A. Patil, S. Freguia, J.J. Gooding, K. Rabaey, Environ. Sci. Technol. 48 (2014) 7151-7156.
[78] Y.H. Jia, J.H. Ryu, C.H. Kim, W.K. Lee, T.V.T. Tran, H.L. Lee, R.H. Zhang, D.H. Ahn, J. Ind. Eng. Chem. 18 (2012) 715–719.
[79] S. Xu, H. Liu, Y. Fan, R. Schaller, J. Jiao, F. Chaplen, Appl. Microbiol. Biotechnol. 93 (2012) 871–880.
[80] Y. Chen, L. Chen, P. Li, Y. Xu, M. Fan, S. Zhu, S. Shen, Energy 109 (2016) 620-628.
[81] Y. Qiao, C.M. Li, S.J. Bao, Q.L. Bao, J. Power. Sources 170 (2007) 79-84.
[82] Y. Fan, S. Xu, R. Schaller, J. Jiao, F. Chaplen, H. Liu, Biosens. Bioelectron. 26 (2011) 1908-1912.
[83] V. Sarathi, K.S. Nahm, Biosens. Bioelectron. 43 (2013) 461–475.
[84] Y. Zhang, G. Mo, X. Li, W. Zhang, J. Zhang, J. Ye, X. Huang, C. Yu, J. Power Sources 196 (2011) 5402–5407.
[85] X. Wang, S. Cheng, Y. Feng, M.D. Merrill, T. Saito, B.E. Logan, Environ Sci. Technol. 43 (2009) 6870-6874.
[86] D.H. Lim, J. Wilcox, J. Phys. Chem. C 116 (2012) 3653-3660.
[87] Y. Feng, Q. Yang, X. Wang, B.E. Logan, J. Power Sources 195 (2010) 1841–1844.
[88] D.A. Lowy, L.M. Tender, J.G. Zeikus, D.H. Park, D.R. Lovley, Biosens. Bioelectron. 21 (2006) 2058–2063.
[89] C. Lupi, A. Dell Era, M. Pasquali, Int. J. Hydrogen Energy 39 (2014) 1932–1940.
[90] L. De Silva Munoz, A. Bergel, D. Féron, R. Basséguy, Int. J. Hydrogen Energy 35 (2010) 8561–8568.
[91] J.M. Olivares-Ramírez, M.L. Campos-Cornelio, J. Uribe Godínez, E. Borja-Arco, R.H. Castellanos, Int. J. Hydrogen Energy 32 (2007) 3170-3173.
[92] Y. Zhang, M.D. Merrill, B.E. Logan, Int. J. Hydrogen Energy 35 (2010) 12020-12028.
[93] M.D. Merrill, B.E. Logan, J. Power Sources 191 (2009) 203-208.
[94] S. Da Silva, R. Basséguy, A. Bergel, Electrochim Acta 49 (2004) 4553-4561.
[95] L. De Silva Muñoz, A. Bergel, R. Basséguy, Corros. Sci. 49 (2007) 3988-4004.
[96] L.D. Munoz, B. Erable, L. Etcheverry, J. Riess, R. Basséguy, A. Berge, Electrochem. Commun. 12 (2010) 183-186.
[97] J.R. Ambler, B.E. Logan, Int. J. Hydrogen Energy 36 (2011) 160-166.
[98] M. Su, L. Wei, Z. Qiu, G. Wang, J. Shen, J. Power Sources 301 (2016) 29-34.
[99] H. Hu, Y. Fan, H. Liu, Int. J. Hydrogen Energy 34 (2009) 8535-8542.
[100] S. Hrapovic, M.F. Manuel, J. Luong, S. Guiot, B. Tartakovsky, Int. J. Hydrogen Energy 35 (2010) 7313-7320.
[101] M.F. Manuel, V. Neburchilov, H. Wang, S.R. Guiot, B. Tartakovsky, J. Power Sources 195 (2010) 5514-5519.
[102] J.M. Marracino, F. Coeuret, S. Langlois, Electrochim. Acta 32 (1987) 1303-1309.
[103] S. Rausch, H. Wendt. J. Electrochem. Soc. 143 (1996) 2852-2862.
[104] R.A. Rozendal, F. Harnisch, A.W. Jeremiasse, U. Schroder, Bioelectrochemical systems: from extracellular electron transfer to biotechnological application, IWA Publishing, 2010.
[105] A.W. Jeremiasse, H.V.M. Hamelers, M. Saakes, C.J.N. Buisman, Int. J. Hydrogen Energy 35 (2010) 12716-12723.
[106] A. Escapa, L. Gil-Carrera, V. García, A. Morán, Bioresour. Technol. 117 (2012) 55-62.
[107] R.D. Cusick, P.D. Kiely, B.E. Logan, Int. J. Hydrogen Energy 35 (2010) 8855-8861.
[108] M. Mitov, E. Chorbadzhiyska, R. Rashkov, Y. Hubenova, Int. J. Hydrogen Energy 37 (2012) 16522-16526.
[109] E. Ribot-Llobet, J.Y. Nam, J.C. Tokash, A. Guisasola, B.E. Logan, Int. J. Hydrogen Energy 38 (2013) 2951-2956.
[110] A. Kadier, Y. Simayi, K. Chandrasekhar, M. Ismail, M.S. Kalil, Int. J. Hydrogen Energy 40 (2015) 14095-14103.
[111] S. Farhangi, S. Ebrahimi, M.S. Niasar, Biotechnol. Lett. 36 (2014) 1987-1992.
[112] L. Lu, D. Hou, Y. Fang, Y. Huang, Z.J. Ren, Electrochimica. Acta 206 (2016) 381–387.
[113] F. Harnisch, G. Sievers, U. Schroder, Appl. Catal. B 89 (2009) 455-458.
[114] Y.X. Huang, X.W. Liu, X.F. Sun, G.P. Sheng , Y.Y. Zhang, G.M. Yan, S.G. Wang, A.W. Xu , H.Q. Yu, Int. J. Hydrogen Energy 36 (2011) 2773-2776.
[115] J.C. Tokash, B.E. Logan, Int. J. Hydrogen Energy 36 (2011) 9439-9445.
[116] L. Xiao, Z. Wen, S. Ci, J. Chen, Z. He, Nano Energy 1 (2012) 751-756.
[117] Y. Hou, R. Zhang, H. Luo, G. Liu, Y. Kim, S. Yu, J. Zeng. Process. Biochem. 50 (2015) 1103-1109.
[118] H. Dai, H. Yang, X. Liu, X. Jian, Z. Liang, Fuel 174 (2016) 251–256.
[119] L. Wang, Y. Chen, Q. Huang, Y. Feng, S. Zhu, S. Shen, J. Chem. Technol. Biotechnol. 87 (2012) 1150–1156.
[120] Q. Yang, Y. Jiang, Y. Xu, Y. Qiu, Y. Chen, S. Zhu, S. Shen, J. Chem. Technol. Biotechnol. 90 (2015) 1263–1269.
[121] H. Yuan, J. Li, C. Yuan, Z. He, Chem. Electro. Chem. 1 (2014) 1828–33.
[122] M.H. Sheikh-Mohseni, A. Nezamzadeh-Ejhieh, Electrochim. Acta 147 (2014) 572-581.
[123] M.S. Tohidi, A. Nezamzadeh-Ejhieh, Inter. J. Hydrogen Energy 41 (2016) 8881-8892.
[124] F. Alidusty, A. Nezamzadeh-Ejhieh, Inter. J. Hydrogen Energy 41 (2016) 6288-6299.
[125] Z. He, L.T. Angenent, Electroanalysis 18 (2006) 2009-2015.
[126] R.A. Rozendal, A.W. Jeremiasse, H.V.M. Hamelers, C.J.N. Buisman, Environ. Sci. Technol. 42 (2008) 629-634.
[127] A.W. Jeremiasse, H.V.M. Hamelers, C.J.N. Buisman, Bioelectrochemistry 78 (2010) 39-43.
[128] L. Huang, L. Jiang, Q. Wang, X. Quan, J. Yang, L. Chen, Chem. Eng. J. 253 (2014) 281-290.
[129] E. Croese, M. Pereira, G.J. Euverink, A.M. Stams, J. Geelhoed, Appl. Microbiol. Biotechnol. 92 (2011) 1083-1093.
[130] Q. Fu, H. Kobayashi, Y. Kuramochi, J. Xu, T. Wakayama, H. Maeda, K. Sato, Int. J. Hydrogen Energy 38 (2013) 15638–45.
[131] Y. Chen, Y. Xu, L. Chen, P. Li, S. Zhu, S. Shen, Energy 88 (2015) 377-384.
[132] Y. Chen, J. Shen, L. Huang, Y. Pan, X. Quan, Int. J. Hydrogen Energy 41 (2016) 13368–13379.
[133] A. Escapa, R. Mateos, E.J. Martínez, J. Blanes, Renew. Sust. Energ. Rev. 55 (2016) 942–956.
[134] K.J. Chae, M.J. Choi, K.J. Kim, F.F. Ajayi, I.S. Chang, I.S. Kim, Environ. Sci. Technol. 43 (2009) 9525-9530.
[135] K.J. Chae, K.J. Kim, M.J. Choi, E.Yang, I.S. Kim, X. Ren, M. Lee, Chem. Eng. J. 254 (2014) 393-398.
[136] M.Y. Lee, K.Y. Kim, E. Yang, I.S. Kim, Bioresour. Technol. 187 (2015) 106-112.
[137] R.A. Rozendal, A.W. Jeremiasse, H.V.M. Hamelers, Water. Sci. Technol. 57 (2008) 1757-1762.
[138] S. Cheng, B.E. Logan, Water. Sci. Technol. 58 (2008) 853-857.
[139] B. Tartakovsky, M.F. Manuel, H. Wang, S. Guiot, Int. J. Hydrogen Energy 34 (2009) 672–677.
[140] L. Lu, D. Xing, T. Xie, N. Ren, B.E. Logan, Biosens. Bioelectron. 25 (2010) 2690–2695.
[141] Y. H. Wang, B.S.Wang, Y.P. Liu, Q.Y. Chen, Int. J. Hydrogen Energy 38 (2013) 6600–6606.
[142] H. Hu, Y. Fan, H. Liu, Water. Res. 42 (2008) 4172-4178.
[143] T. Catal, K.L. Lesnik, H. Liu, Bioresour. Technol. 187 (2015) 77-83.