Synthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation
الموضوعات : Iranian Journal of CatalysisMohammad Hossein Nobahari 1 , Ahmad Nozad Golikand 2 , Mojtaba Bagherzadeh 3
1 - Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
2 - Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.|Material and Nuclear Fuel Research School, NSTRI, Tehran, Iran.
3 - Material and Nuclear Fuel Research School, NSTRI, 81465-1589, Isfahan, Iran.
الکلمات المفتاحية: Pt3Co electrocatalyst, Methanol oxidation reaction, Electrochemical activity, Direct methanol fuel cells,
ملخص المقالة :
The impregnation method was used to synthesize Pt and Pt3Co supported on MWCNTs applying NaBH4 as the reducing agent. The structure, morphology, and chemical composition of the electrocatalysts were characterized through SEM, XRD, and EDX. X-ray diffraction showed a good crystallinity of the supported Pt nanoparticles on the composites and showed the formation of Pt3Co alloy. The SEM images revealed that the particles of Pt3Co were deposited uniformly on the surface of MWCNT with a diameter of 10 nm. EDX analysis confirmed the surface segregation of Co and Pt occurred (1:3 surface atomic ratio Pt-Co) for the Pt3Co/MWCNT nanocomposite. The Pt3Co/MWCNTs and Pt/MWCNTs electrocatalysts’ electrochemical performance was assessed against the methanol oxidation reaction (MOR) in 0.5 M H2SO4 solution using the chronoamperometry (CA) and the cyclic voltammetry (CV) methods. The minimum onset potential and the largest oxidation current density were obtained at Pt3Co/MWCNTs electrocatalyst. The Pt3Co/MWCNT catalyst with a good alloying degree has been shown to have better anti-poisoning ability, electrochemical activity, and long-term durability than Pt/MWCNT catalysts, approved by the bimetallic catalysts’ bi-functional mechanism.
[1] A. Arico, S. Srinivasan, V. Antonucci, Fuel Cells 1 (2001) 133-161.
[2] S. Basri, S.K. Kamarudin, W.R.W. Daud, Z. Yaakub, Int. J. Hydrogen Energy 35 (2010) 7957-7970.
[3] K.-Y. Chan, J. Ding, J. Ren, S. Cheng, K.Y. Tsang, J. Mater. Chem. 14 (2004) 505-516.
[4] L. Bai, H. Zhu, J.S. Thrasher, S.C. Street, ACS App. Mater. Interfaces 1 (2009) 2304-2311.
[5] C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, J.-M. Léger, J. Power Sources 105 (2002) 283-296.
[6] B. Gurau, R. Viswanathan, R. Liu, T.J. Lafrenz, K.L. Ley, E. Smotkin, E. Reddington, A. Sapienza, B.C. Chan, T.E. Mallouk, J. Phys. Chem. B 102 (1998) 9997-10003.
[7] K.L. Ley, R. Liu, C. Pu, Q. Fan, N. Leyarovska, C. Segre, E. Smotkin, J. Electrochem. Soc. 144 (1997) 1543-1548.
[8] F. Alidusty, A. Nezamzadeh-Ejhieh, Int. J. Hydrogen Energy 41 (2016) 6288-6299.
[9] A. Ehsani, R. Asgari, A. Rostami-Vartooni, H.M. Shiri, A. Yeganeh-Faal, Iran. J. Catal. 6 (2016) 269-274.
[10] M.S. Tohidi, A. Nezamzadeh-Ejhieh, Int. J. Hydrogen Energy 41 (2016) 8881-8892.
[11] M.H. Sheikh-Mohseni, A. Nezamzadeh-Ejhieh, Electrochim. Acta, 147 (2014) 572-581.
[12] N.V. Long, M. Ohtaki, T.D. Hien, R. Jalem, M. Nogami, J. Nanopart. Res. 13 (2011) 5177.
[13] N.V. Long, Y. Yang, C.M. Thi, N. Van Minh, Y. Cao, M. Nogami, Nano Energy 2 (2013) 636-676.
[14] V. Bambagioni, C. Bianchini, A. Marchionni, J. Filippi, F. Vizza, J. Teddy, P. Serp, M. Zhiani, J. Power Sources 190 (2009) 241-251.
[15] T. Maiyalagan, Int. J. Hydrogen Energy 34 (2009) 2874-2879.
[16] T. Maiyalagan, J. Power Sources 179 (2008) 443-450.
[17] B. Rajesh, K.R. Thampi, J.-M. Bonard, N. Xanthapolous, H. Mathieu, B. Viswanathan, Electrochem. Solid State Lett. 5 (2002) E71-E74.
[18] H. Pang, J. Lu, J. Chen, C. Huang, B. Liu, X. Zhang, Electrochim. Acta 54 (2009) 2610-2615.
[19] H. Song, X. Qiu, F. Li, Electrochim. Acta 53 (2008) 3708-3713.
[20] H. Song, X. Qiu, F. Li, App. Catal. A 364 (2009) 1-7.
[21] Z. Liu, B. Guo, L. Hong, T.H. Lim, Electrochem. Commun. 8 (2006) 83-90.
[22] S. Song, J. Liu, J. Shi, H. Liu, V. Maragou, Y. Wang, P. Tsiakaras, App. Catal. B 103 (2011) 287-293.
[23] J. Zhao, P. Wang, W. Chen, R. Liu, X. Li, Q. Nie, J. Power Sources 160 (2006) 563-569.
[24] H. Huang, X. Wang, J. Mater. Chem. A 2 (2014) 6266-6291.
[25] S. Sharma, B.G. Pollet, J. Power Sources 208 (2012) 96-119.
[26] B. Stoner, B. Brown, J. Glass Diamond Relat. Mater. 42 (2014) 49.
[27] A. Bonesi, G. Garaventa, W. Triaca, A.C. Luna, Int. J. Hydrogen Energy 33 (2008) 3499-3501.
[28] W. Chen, J. Kim, S. Sun, S. Chen, Langmuir 23 (2007) 11303-11310.
[29] S. Koh, J. Leisch, M.F. Toney, P. Strasser, J. Phys. Chem. C 111 (2007) 3744-3752.
[30] D. Susac, A. Sode, L. Zhu, P. Wong, M. Teo, D. Bizzotto, K. Mitchell, R. Parsons, S. Campbell, J. Phys. Chem. B 110 (2006) 10762-10770.
[31] N. Atar, T. Eren, M.L. Yola, H. Karimi-Maleh, B. Demirdögen, RSC Adv. 5 (2015) 26402-26409.
[32] C.-T. Hsieh, J.-Y. Lin, J. Power Sources 188 (2009) 347-352.
[33] C.-T. Hsieh, J.-Y. Lin, J.-L. Wei, Int. J. Hydrogen Energy 34 (2009) 685-693.
[34] R. Amin, K. El-Khatib, R.A. Hameed, E.R. Souaya, M.A. Etman, App. Catal. A 407 (2011) 195-203.
[35] S. Aghdasi, M. Shokri, Iran. J. Catal. 6 (2016) 481-487.
[36] B. Khodadadi, M. Bordbar, Iran. J. Catal. 6 (2016) 37-42.
[37] L. Gao, L. Ding, L. Fan, Electrochim. Acta 106 (2013) 159-164.
[38] A. Nouralishahi, A.A. Khodadadi, Y. Mortazavi, A. Rashidi, M. Choolaei, Electrochim. Acta 147 (2014) 192-200.
[39] A. Kabbabi, R. Faure, R. Durand, B. Beden, F. Hahn, J.M. Leger, C. Lamy, J. Electroanal. Chem. 444 (1998) 41-53.
[40] R. Ahmadi, M. Amini, J. Bennett, J. Catal. 292 (2012) 81-89.
[41] R. Crisafulli, R. Antoniassi, A.O. Neto, E. Spinacé, Int. J. Hydrogen Energy 39 (2014) 5671-5677.
[42] E. Antolini, J.R. Salgado, E.R. Gonzalez, App. Catal. B 63 (2006) 137-149.
[43] J. Zhao, A. Manthiram, App. Catal. B 101 (2011) 660-668.
[44] J.G. de la Fuente, S. Rojas, M. Martínez-Huerta, P. Terreros, M. Pena, J. Fierro, Carbon 44 (2006) 1919-1929.
[45] E. Lust, E. Härk, J. Nerut, K. Vaarmets, Electrochim. Acta 101 (2013) 130-141.
[46] M.M. Mohamed, M. Khairy, S. Eid, J. Power Sources 304 (2016) 255-265.
[47] M.M. Mohamed, S. Eid, A. El-Etre, J. Photochem. Photobio. A 338 (2017) 37-48.
[48] J. Chen, M. Wang, B. Liu, Z. Fan, K. Cui, Y. Kuang, J. Phys. Chem. B 110 (2006) 11775-11779.
[49] Y. Lin, X. Cui, C.H. Yen, C.M. Wai, Langmuir 21 (2005) 11474-11479.
[50] Y. Wang, J. Clancey, G. Lu, J. Liu, L. Liu, J. Chaudhuri, S. George, M. Xie, S. Wei, Z. Guo, J. Electrochem. Soc. 163 (2016) F1-F10.
[51] Y. Li, L. Tang, J. Li, Electrochem. Commun. 11 (2009) 846-849.
[52] W. Ye, Y. Chen, Y. Zhou, J. Fu, W. Wu, D. Gao, F. Zhou, C. Wang, D. Xue, Electrochim. Acta 142 (2014) 18-24.
[53] W. Ye, H. Hu, H. Zhang, F. Zhou, W. Liu, App. Surf. Sci. 256 (2010) 6723-6728.
[54] H. Tong, H.-L. Li, X.-G. Zhang, Carbon 45 (2007) 2424-2432.