Pilot scale study of Co-Fe-Ni nanocatalyst for CO hydrogenation in Fischer-Tropsch synthesis
الموضوعات : Iranian Journal of CatalysisHamid Reza Azizi 1 , Ali Akbar Mirzaei 2 , Razieh Sarani 3 , Massoud Kaykhaii 4
1 - Young Researchers Club, South Tehran Branch, Islamic Azad University, Tehran, Iran.
2 - Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran.
3 - Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran.
4 - Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran.
الکلمات المفتاحية: Co-precipitation, Calcination, Co-Fe-Ni catalyst, Fischer&ndash, Tropsch synthesis, Heavy hydrocarbons,
ملخص المقالة :
In this work, a Co-Fe-Ni catalyst was prepared and the effect of a range of operational variables such as gas hourly space velocity (GHSV), calcination temperature, calcination time and agent on its catalytic performance for green-fuels production was investigated. By application of different characterization techniques such as XRD, BET, TGA/DSC, and SEM, it was found that these parameters have great effects on the structure, porosity, morphology and physic-chemical properties of this catalyst. The optimum conditions were found for the samples which were calcined at 550℃ in air for 6 hours, and operated at 300℃ and 4800h-1 as the reaction temperature and GHSV respectively. Results also revealed that any increase in the calcination temperature promotes the product shifting towards heavier hydrocarbons (more C5+ production). Calcination in air atmosphere was more effective than calcination in N2 atmosphere.
[1] A.A. Muleja, Y. Yao, D. Glasser, D. Hildebrandt, Ind. Eng. Chem. Res. 56 (2017) 469–478.
[2] T.O. Eschemann, K.P. de Jong, ACS Catal. 5 (2015) 3181−3188.
[3] M. Zhuo, A. Borgna, M. Saeys, J. Catal. 297 (2013) 217-226.
[4] K. Srirangan, L. Akawi, M. Moo-Young, C. Perry Chou, Appl. Energy 100 (2012) 172-186.
[5] T. Taherzadeh Lari, A.A. Mirzaei, H. Atashi, Catal. Lett. 147 (2017) 1221–1234.
[6] S. Golestan, A.A. Mirzaei, H. Atashi, Int. J. Hydrogen Energy 42 (2017) 9816-9830.
[7] R. Liu, R. Liu, X. Ma, B. H. Davis, Z. Li, Fuel 211 (2018) 827-836.
[8] H.J. Wan, B.S. Wu, T.Z. Li, Z.C. Tao, X. An, H.W. Xiang, Y.W. Li, J. Fuel Chem. Technol. 35 (2007) 589-594.
[9] Z. Hajjar, M. Doroudian Rad, S. Soltanali, Res. Chem. Intermed. 43 (2017) 1341-1353.
[10] M. Luo, W.D. Shafer, B.H. Davis, Catal Lett. 144 (2014) 1031–1041.
[11] F. Pardo-Tarifa, S. Cabrera, M. Sanchez-Dominguez, M. Boutonnet, Int. J. Hydrogen Energy 42 (2017) 9754-9765.
[12] J. Aluha, N. Abatzoglou, J. Ind. Eng. Chem. 50 (2018) 199-212.
[13] X. Zhang, H. Su, Y. Zhang, X. Gu, Fuel 184 (2016) 162-168.
[14] M. Dowlati, N. Siyavashi, H.R. Azizi, Arab. J. Sci. Eng. 43 (2018) 2441-2450.
[15] I.R. Leith, M.G. Howden, Appl. Catal. 37 (1988) 75-92.
[18] J.R. Anderson, M. Boudart, Catalysis: Science and Technology, Vol. 4, Springer-Verlag, Berlin, Heidelberg, 1983.
[19] B.C. Enger, A. Holmen, Catal. Rev. Sci. Eng. 54 (2012) 437-488.
[20] Z. Cheng-hua, Y. Yong, T. Zhi-chao, X. Hong-wei, L. Yong-wang, J. Fuel Chem. Technol. 34 (2006) 695-699.
[21] G. Li, L. Hue, J.M. Hill, Appl. Catal. A 301 (2006) 16-24.
[22] M. Ao, G.H. Pham, V. Sage, V. Pareek, Fuel 206 (2017) 390-400.
[23] H.R. Azizi, A.A. Mirzaei, M. Kaykhaii, M. Mansouri, J. Nat. Gas Sci. Eng. 18 (2014) 484-491.
[24] H.H. Storch, Adv. Catal. 1 (1948) 115-156.
[25] H. Pichler, Adv.Catal. 4 (1952) 271-341.
[26] F. Fischer, K. Mayer, Brennst. Chem. 12 (1931) 225-232.
[27] D. Reinalda, J. Kars, Eur. Pat. Appl. EP 0421502 A2 (1991).
[28] J. van de Loosdrecht, S. Barradas, E.A. Caricato, N.G. Ngwenya, P.S. Nkwanyana, M.A.S. Rawat, B.H. Sigwebela, P.J. van Berge, J.L. Visagie, Top. Catal. 26 (2003). 121-127.
[29] M. Arsalanfar, A.A. Mirzaei, H.R. Bozorgzadeh, J. Ind. Eng. Chem. 19 (2013) 478-487.
[30] A.A. Mirzaei, S. Shahryari, M. Arsalanfar, J. Nat. Gas Sci. Eng. 3 (2011) 537-546.
[31] Z. Tao, Y. Yang, M. Ding, T. Li, H. Xiang, Y. Li, Catal. Lett. 117 (2007) 130-135.
[32] M. Ding, Y. Yang, Y. Li, T. Wang, L. Ma, C. Wu, Appl. Energy 112 (2013) 1241-1246.
[33] G. Ertl, H. Knözinger, J. Weitkamp, Handbook of Heterogeneous Catalysis Vol. 1, Wiley-VCH, Weinheim, 1997.
[34] S.H. Song, S.B. Lee, J.W. Bae, P.S. Sai Prasad, K.W. Jun, Y.G. Shul, Catal. Lett. 129 (2009) 233-239.
[35] T. Herranz, S. Rojas, F.J. Pérez-Alonso, M. Ojeda, P. Terreros, J.L.G. Fierro, Appl. Catal. A 311 (2006) 66-75.
[36] N. Lohitharn, J.G. Goodwin Jr., J. Catal. 260 (2008) 7-16.
[37] A.A. Mirzaei, R. Sarani, H.R. Azizi, S. Vahid, H.O. Torshizi. Fuel. 140 (2015) 701-710.
[38] M. Feyzi, M. Irandoust, A.A. Mirzaei, Fuel Process. Technol. 92 (2011) 1136-1143.