A strategy for degradation of 2,5-dichlorophenol using its photoelectrocatalytic oxidation on the TiO2/Ti thin film electrode
الموضوعات : Iranian Journal of Catalysis
1 - Department of Basic Sciences, Farhangian University, Tehran, Iran.
الکلمات المفتاحية: Degradation, Photoelectrocatalysis, TiO2/Ti electrode, 2, 5-Dichlorophenol,
ملخص المقالة :
In this work, the photoelectrocatalytic (PEC) degradation of 2,5-dichlorophenol can be used for its removal from aqueous solution. To study this activity, a TiO2 thin film modified titanium sheet (TiO2/Ti) was fabricated by anodizing Ti plates using a two electrode system under the constant bias voltage of 20 V for 20 min in a solution of 0.2% (v/v) HF followed by calcination at 500 oC for 2 h. Then, the electrochemical properties of 2,5-dichlorophenol were compared on the surface of the TiO2/Ti and unmodified Ti electrodes. Consequently, the TiO2/Ti was applied for PEC degradation of 2,5-dichlorophenol. It was found that 2,5-dichlorophenol could be degraded more efficiently by this photoelectrocatalysis process than the sum of degradation obtained by photocatalytic (PC) and electrochemical (EC) oxidation so that the amount of 2,5-dichlorophenol degraded by PEC, PC and EC oxidation were equal to 51%, 39% and 5% respectively under the 0.4 V voltage in 60 min. The effect of various parameters was studied and the highest degradation percentage of 2,5-dichlorophenol was obtained at pH 6.0, the initial 2,5-dichlorophenol concentration of 7.0 mg L-1 and applied potential of 1.2 V.
[1] L. Vafayi, S. Gharibe, Iran. J. Catal. 5 (2015) 365-371.
[2] A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi, Chem. Eng. J. 228 (2013) 631-641.
[3] H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Colloid Interface Sci. 490 (2017) 652-664.
[4] L. Shabani, H. Aliyan, Iran. J. Catal. 6 (2016) 221-228.
[5] A. Nezamzadeh-Ejhieh, Z. Ghanbari-Mobarakeh, J. Ind. Eng. Chem. 21 (2015) 668-676.
[6] N. Ajoudanian, A. Nezamzadeh-Ejhieh, Mater. Sci. Semicond. Process. 36 (2015) 162-169.
[7] H. Fallah Moafi, Iran. J. Catal. 6 (2016) 281-292.
[8] D. Kanakaraju, B.D. Glass, M. Oelgemöller, Environ. Chem. Lett. 12 (2014) 27-47.
[9] H.R. Pouretedal, M. Fallahgar, F.S. Pourhasan, M. Nasiri, Iran. J. Catal. 7 (2017) 317-326.
[10] T. Yoshida, S. Niimi, M. Yamamoto, T. Nomoto, S. Yagi, J. Colloid Interface Sci. 447 (2015) 278-281.
[11] A. Besharati-Seidani, Iran. J. Catal. 6 (2016) 447-454.
[12] B. Khodadadi, Iran. J. Catal. 6 (2016) 305-311.
[13] H. Fallah Moafi, Iran. J. Catal. 6 (2016) 281-292.
[14] A. Nezamzadeh-Ejhieh, M. Bahrami, Des. Water Treat. 55 (2015) 1096-1104
[15] G. Qin, Q. Wu, Z. Sun, Y. Wang, J. Luo, S. Xue, J. Hazard. Mater. 199-200 (2012) 226-232.
[16] D.A. Neamen, Semiconductor Physics and Devices: Basic Principles, McGraw Hill, Singapore, 2012.
[17] W. Sigmund, H. El-Shall, O. Dinesh Shah, M. Brij Moudgil, Particulate Systems in Nano- and Biotechnologies, CRC Press, Boca Raton, 2008.
[18] K. Kalyanasundaram, M. Graetzel, Curr. Opin. Biotechnol. 21 (2010) 298-310.
[19] Y.B. Xie, X.Z. Li, J. Hazard. Mater. 138 (2006) 526-533.
[20] W.H. Leng, Z. Zhang, J.Q. Zhang, J. Mol. Catal. A Chem. 206 (2003) 239-252.
[21] H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He, Water Res. 79 (2015) 128-146.
[22] E. Zarei, R. Ojani, J. Solid State Electrochem. 21 (2017) 305-336.
[23] A. Martins de Freitas, C. Sirtori, P. Peralta-Zamora, Environ. Chem. Lett. 9 (2011) 97-102.
[24] Y. Li, C.-Y. Yang, S.-M. Chen, Int. J. Electrochem. Sci. 6 (2011) 4829-4842.
[25] R. Ojani, J.B. Raoof, E. Zarei, J. Solid State Electrochem. 16 (2012) 2143-2149.
[26] H. Al-Kandari, A.M. Abdullah, A.M. Mohamed, S. Al-Kandari, J. Mater. Sci. 51 (2016) 8331-8345.
[27] Y. Liu, J. Li, B. Zhou, J. Bai, Q. Zheng, J. Zhang, W. Cai, Environ. Chem. Lett. 7 (2009) 363-368.
[28] M. Pera-Titus, V. García-Molina, M.A. Baños, J. Giménez, S. Esplugas, Appl. Catal. B 47 (2004) 219-256.
[29] F. Soori, A. Nezamzadeh-Ejhieh, J. Mol. Liq. 255 (2018) 250-256.
[30] Z.A. Mirian, A. Nezamzadeh-Ejhieh, Des. Water Treat. 57 (2016) 16483-16494.
[31] A. Nezamzadeh-Ejhieh, S. Khorsandi, J. Ind. Eng. Chem. 20 (2014) 937-946.
[32] W. Zhong, D. Wang, X. Xu, J. Hazard. Mater. 217 (2012) 286-292.
[33] S.A. Boyd, D.R. Shelton, Appl. Environ. Microbiol. 47 (1984) 272-277.
[34] M.C. Buser, H.E. Murray, F. Scinicariello, J. Pediatr. 165 (2014) 744-749.
[35] Y. Wei, J. Zhu, J. Expo. Sci. Environ. Epidemiol. 26 (2015) 329-333.
[36] E. Jerschow, P. Parikh, A.P. McGinn, G. de Vos, S. Jariwala, G. Hudes, D. Rosenstreich, Ann. Allergy Asthma. Immunol. 109 (2012) 420-425.
[37] C. Philippat, M. Mortamais, C. Chevrier, C. Petit, A.M. Calafat, X. Ye, M.J. Silva, C. Brambilla, I. Pin, M.A. Charles, S. Cordier, R. Slama, Environ. Health Perspect. 120 (2012) 464-470.
[38] D. Liang, S. Wu, P. Wang, Y. Cai, Z. Tian, J. Liu, C. Liang, RSC Adv 4 (2014) 26201-26206.
[39] H.E. Swanson, H.F. McMurdie, M.C. Morris, E.H. Evans, Standard X-ray Diffraction Powder Patterns, United States Department of Commerce, National Bureau of Standards Monograph 25- Section 7, 1969.
[40] B.D. Cullity, Elements of X-Ray Diffraction. Addison-Wesley, Reading, MA, 1978.
[41] S. Aghabeygi, R. Kia Kojoori, H. Vakili Azad, Iran. J. Catal. 6 (2016) 275-279.
[42] B. Khodadadi, M. Bordbar, Iran. J. Catal. 6 (2016) 37-42.
[43] C.A. Martinez-Huitle, E. Brillas, Appl. Catal. B 166-167 (2015) 603-643.
[44] K. Kalcher, J. M. Kauffmnann, J. Wang, I. Svancara, K. Vytras, C. Neuhold, Z. Yang, Electroanalysis 7 (1995) 5-22.
[45] A. Nezamzadeh-Ejhieh, Z. Banan, Iran. J. Catal. 2 (2012) 79-83.
[46] T.S. Natarajan, K. Natarajan, H.C. Bajaj, R.J. Tayade, Ind. Eng. Chem. Res. 50 (2011) 7753-7762.
[47] C. Stephen, M.I. Stefan, J.R. Bolton, A. Safarzadeh-Amiri, Environ. Sci. Technol. 34 (2000) 659-662.
[48] J.R. Bolton, K.G. Bircger, W. Tumas, C.A. Tolman, Pure Appl. Chem. 73 (2001) 627-637.
[49] E. Hao, N.A. Anderson, J.B. Asbury, T. Lian, J. Phys. Chem. B 106 (2002) 10191-10198.
[50] G.R. Buettner, Arch. Biochem. Biophys. 300 (1993) 535-543.
[51] A.J. Bard, L.R. Faulkner, Electrochemical methods: Fundamentals and applications, New York, Wiley, 2001.
[52] J.J. Gulicovski, L.S. Cerovic, S.K. Milonjic, Mater. Manuf. Processes 23 (2008) 615-619.
[53] K. Nohara, H. Hidaka, E. Pelizzetti, N. Serpone, J. Photochem. Photobiol. A 102 (1997) 265-272.
[54] I. Poulios, I. Tsachpinis, J. Chem. Technol. Biotechnol. 74 (1999) 349-357.
[55] H. Zabihi-Mobarakeh, A. Nezamzadeh-Ejhieh, J. Ind. Eng. Chem. 26 (2015) 315-321.
[56] J.M. Kesselman, N.S. Lewis, M.R. Hoffmann, Environ. Sci. Technol. 31 (1997) 2298-2302.
[57] M.V.B. Zanoni, J.J. Sene, M.A. Anderson, J. Photochem. Photobio1. A 157 (2003) 55- 63.
[58] H.J. Lewerenz, C. Heine, K. Skorupska, N. Szabo, T. Hannappel, T. Vo-Dinh, S.A. Campbell, H.W. Klemm, A.G. Munoz, Energy Environ. Sci. 3 (2010) 748-760.
[59] M.L. Hitchman, F. Tian, J. Electroanal. Chem. 538-539 (2002) 165-172.