Synthesis of novel tridentate ligand-based palladium catalyst and investigation of its reactivity towards Suzuki, Sonogashira and Heck coupling reactions
الموضوعات : Iranian Journal of CatalysisRajendran Nagarajan 1 , Panneer Selvam Rajeswari 2 , Lourdusamy Emmanuvel 3
1 - Department of Chemistry, Kongju National University, Kongju, Chungnam, 32588, Republic of Korea
2 - Department of Applied Chemistry, Karunya Institute of Technology and Sciences, Karunyar Nagar, Coimbatore, 641114, India
3 - Department of Applied Chemistry, Karunya Institute of Technology and Sciences, Karunyar Nagar, Coimbatore, 641114, India
الکلمات المفتاحية: C-C Cross coupling, Pd complex, Tridentate ligand, Palladacycle,
ملخص المقالة :
We have demonstrated a simple and efficient route for the synthesis of a novel imine based tridentate ligand and its Pd-complex to investigate the C-C cross-coupling reactions, that involve column chromatography purification in only one step. The catalytic activity of the newly synthesized catalyst was studied for the Suzuki, Sonogashira and, Heck cross-coupling reactions under mild conditions. All synthesized molecules are thoroughly characterized by IR and NMR techniques. The pro-ligand was characterized by a single Crystal X-ray diffraction study. The catalyst has excellent activity and good yield was obtained with minimum catalyst loading. The obtained yields are good to excellent.
[1] I. Shinkai, A. O. King, R. D. Larsen. Pure Appl. Chem. 66 (2007) 1551–1556.
[2] A. O. King, E. G. Corley, R. K. Anderson, R. D. Larsen, T. R. Verhoeven, P. J. Reider, Y. B. Xiang, M. Belley, Y. Leblanc, M. Labelle, P. Prasit, R. J. Zamboni. J. Org. Chem. 58 (1993) 3731–3735.
[3] Y. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, J. Huang. Nat. Mater. 10 (2011) 296–302.
[4] R. A. DeVries, A. Mendoza. Organometallics. 13 (1994) 2405–2411.
[5] C. Torborg, M. Beller. Adv. Synth. Catal. 351 (2009) 3027–3043.
[6] H. Jung, H. Hwang, K. M. Park, J. Kim, D. H. Kim, Y. Kang. Organometallics. 29 (2010) 2715–2723.
[7] D. J. Burke, D. J. Lipomi. Energy Environ. Sci. 6 (2013) 2053–2066.
[8] C. Bracher, H. Yi, N. W. Scarratt, R. Masters, A. J. Pearson, C. Rodenburg, A. Iraqi, D. G. Lidzey. Org. Electron. Physics, Mater. Appl. 27 (2015) 266–273.
[9] A. Suzuki. Chem. Commun. (2005) 4759–4763.
[10] R. Martin, S. L. Buchwald. Acc. Chem. Res. 41 (2008) 1461–1473.
[11] M. Shibasaki, C. D. J. Boden, A. Kojima. Tetrahedron. 53 (1997) 7371–7395.
[12] W. Cabri, I. Candiani. Acc. Chem. Res. 28 (1995) 2–7.
[13] H. Doucet, J. C. Hierso. Angew. Chemie - Int. Ed. 46 (2007) 834–871.
[14] T. Mino, S. Suzuki, K. Hirai, M. Sakamoto, T. Fujita. Synlett. 9 (2011) 1277–1280.
[15] V. B. Phapale, D. J. Cárdenas. Chem. Soc. Rev. 38 (2009) 1598–1607.
[16] J. Zhou, G. C. Fu. J. Am. Chem. Soc. 125 (2003) 14726–14727.
[17] L. Xue, Z. Lin. Chem. Soc. Rev. 39 (2010) 1692–1705.
[18] X. Chen, K. M. Engle, D. Wang, J. Yu. Angew. Chemie - Int. Ed. 48 (2009) 5094–5115.
[19] W. J. Marshall, V. V. Grushin. Organometallics. 22 (2003) 555–562.
[20] N. Sharma, M. Asthana, R. Kumar, K. Mishra, R. M. Singh. Tetrahedron Lett. 55 (2014) 2348–2351.
[21] A. Y. Habashneh, O. O. Dakhil, A. Zein, P. E. Georghiou. Synth. Commun. 39 (2009) 4221–4229.
[22] A. Zhdanko, M. Ströbele, M. E. Maier. Chem. - A Eur. J. 18 (2012) 14732–14744.
[23] A. A. Mikhaylov, A. D. Dilman, R. A. Novikov, Y. A. Khoroshutina, M. I. Struchkova, D. E. Arkhipov, Y. V. Nelyubina, A. A. Tabolin, S. L. Ioffe. Tetrahedron Lett. 57 (2016) 11–14.
[24] D. Seomoon, P. H. Lee. ChemInform. 39 (2008) 1165–1168.
[25] P. W. N. M. Van Leeuwen, P. C. J. Kamer. Catal. Sci. Technol. 8 (2018) 26–113.
[26] J. D. Higgins, L. Neely, S. Fricker, J. Matthey. J. Inorg. Biochem. 49 (1993) 149–156.
[27] J. Quirante, D. Ruiz, A. Gonzalez, C. López, M. Cascante, R. Cortés, R. Messeguer, C. Calvis, L. Baldomà, A. Pascual, Y. Guérardel, B. Pradines, M. Font-Bardía, T. Calvet, C. Biot. J. Inorg. Biochem. 105 (2011) 1720–1728.
[28] P. S. Fier, K. M. Maloney. Angew. Chemie - Int. Ed. 56 (2017) 4478–4482.
[29] A. H. Viuff, M. Heuckendorff, H. H. Jensen. Org. Lett. 18 (2016) 5773–5775.
[30] R. Sitaramaiah, S. Yaroslavsky. J. Am. Chem. Soc. 87 (1965) 3272–3273.
[31] E. Lourdusamy, L. Yao, C. M. Park. Angew. Chemie - Int. Ed. 49 (2010) 7963–7967.
[32] B. K. Kuruba, N. Shariff, S. Vasanthkumar, L. Emmanuvel. Synth. Commun. 45 (2015) 2454–2461.
[33] B. K. Kuruba, L. Emmanuvel, B. Sridhar, S. Vasanthkumar. Tetrahedron. 73 (2017) 2674–2681.
[34] J. F. da S. Petruci, A. A. Cardoso. Microchem. J. 106 (2013) 368–372.
[35] K. C. Nicolaou, P. B. Rao, J. Hao, M. V. Reddy,G. Rassias, X. Huang, D. Y. K. Chen, S. A. Snyder. Angew. Chem. Int. Ed. 42 (2003) 1753 – 1758.
[36] J. M. Makdissi, J. K. Vandavasi, S. G. Newman. Org. Lett. 20 (2018) 4094−4098.
[37] P. Lei, G. Meng, Y. Ling, J. An, M. Szostak J. Org. Chem. 82 (2017) 6638−6646.
[38] M. R. Yadav, M. Nagaoka, M. Kashihara, R. L. Zhong, T. Miyazaki, S. Sakaki, Y. Nakao. J. Am. Chem. Soc. 139 (2017) 9423−9426.
[39] J. Han, Y. Liu, R. Guo. J. Am. Chem. Soc. 131 (2009) 2060–2061.
[40] Y. Liang, Y. X. Xie, J.H. Li. J. Org. Chem. 71 (2006) 379-381.
[41] C. Yi, R. Hua.J. Org. Chem. 71 (2006) 2535-2537.
[42] K. T. Neumann, S. R. Laursen, A. T. Lindhardt, B. B. Andersen, T. Skrydstrup. Org. Lett. 16 (2014), 2216−2219.
[43] R. Mukhopadhyay, N. G. Kundu. Synlett. 7 (2001) 1143–1145.
[44] K. B. Hong, C. W. Lee, E. K. Yum. Tetrahedron Letters 45 (2004) 693–697.
[45] G.Z. Wang, R. Shang, W.M. Cheng, Y. Fu. J. Am. Chem. Soc. 139 (2017) 18307−18312.
[46] E. A. B. Kantchev, G. R. Peh, C. Zhang, J. Y. Ying. Org. Lett. 10 (2008) 3949-3952.
[47] W. B. Reid, J. J. Spillane, S. B. Krause, D. A. Watson. J. Am. Chem. Soc. 138 (2016) 5539–5542.